160 research outputs found
Effect of Structure on Strength of Agglomerates using Distinct Element Method
Knowledge of agglomerate strength is highly desirable for compression and tableting, dissolution and dispersion and mitigation of dust formation. The behaviour of agglomerates is affected by parameters such as density, agglomerate size, primary particle size, and interparticle bond strength. The method of agglomeration influences the evolution of structure, and this in turn affects its strength. Furthermore, the methods of strength characterisation, i.e. quasi-static or impact produce different results. To understand the role of structure and the influence of test method, agglomerate failure behaviour has been analysed by the use of the Distinct Element Method (DEM). We report on our work on the simulation of the breakage of the agglomerates for different porosities and impact conditions, where the role of impact speed and angle and type of contact bonding model have been evaluated. The adhesive contact model of JKR is used to form an agglomerate. The effect of the bonding level on the strength and size distribution of the clusters released as a result of failure has been investigated. This work also evaluates the effect of structure (porosity) on the strength of the agglomerates
Efficacy of bracing immediately after the end of growth: final results of a retrospective case series
Lumbar Scheuermann conservative treatment allows a proper vertebral body growth and spinal configuration: a case series
Efficacy of bracing in worst cases (over 45°): end-growth results of a retrospective case series
Efficacy of conservative treatment of adolescent idiopathic scoliosis: end-growth results respecting SRS and SOSORT criteria
Adolescent soccer is correlated with an increase of kyphosis but a reduction of low back pain: a controlled cross-sectional survey
Efficacy of specific SEAS exercises for hyperkyphosis: end-growth results of a controlled prospective study
Discursos pronunciados en el acto de investidura de Doctor "Honoris Causa" del Excelentísimo Señor D. Thomas Popkewitz
Discurso presentado por el Doctor Miguel A. Pereyra-García Castr
Impact Fracture of Composite and Homogeneous Nanoagglomerates
It is not yet clear on whether the fracture characteristics of structured composite capsules and homogeneous nanoagglomerates differ significantly under impact loading conditions. Experimental measurement of impact fracture properties of such small agglomerates is difficult, due to the length and time scales associated with this problem. Using computer simulations, here we show that nanoagglomerates are subjected to normal impact loading fracture within a few nanoseconds in a brittle manner. The restitution coefficient of the nanoagglomerates varies nonlinearly with initial kinetic energy. The fracture of nanoagglomerates does not always happen at the moment when they experience the maximum wall force, but occurs after a time lag of a few nanoseconds as characterised by impact survival time (IST) and IST index. IST is dependant on the initial kinetic energy, mechanical and geometric properties of the nanoagglomerates. For identical geometries of the capsules, IST index is higher for capsules with a soft shell than for these with a hard shell, an indication of the enhanced ability of the soft nanocapsules to dissipate impact energy. The DEM simulations reported here based on theories of contact mechanics provide fundamental insights on the fracture behaviour of agglomerates—at nanoscale, the structure of the agglomerates significantly influences their breakage behaviour
ERK5/BMK1 is a novel target of the tumor suppressor VHL: implication in clear cell renal carcinoma
Hi ha quatre pàgines de material suplementari sense numeracióExtracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas
- …
