1,350 research outputs found
Celebrity capital in the political field: Russell Brand's migration from stand-up comedy to Newsnight
Our case study of charismatic celebrity comedian Russell Brand’s turn to political activism uses Bourdieu’s field theory to understand the process of celebrity migration across social fields. We investigate how Brand’s capital as a celebrity performer, storyteller and self-publicist translated from comedy to politics. To judge how this worked in practice, we analysed the comedic strategies used in his stand up show Messiah Complex and a Conversational Analysis of his notorious interview with Jeremy Paxman on the BBC’s flagship current affairs programme Newsnight . We argue that Brand was able to secure political legitimacy by creatively constituting himself as an authentic anti-austerity spokesperson for the disenfranchised left in UK. In order to do so he repurposed his celebrity capital to political ends and successfully deployed the cultural and social capital he had developed as a celebrity comedian to secure widespread engagement with his media performances
Quantification of Maceration Changes using Post Mortem MRI in Fetuses
BACKGROUND: Post mortem imaging is playing an increasingly important role in perinatal autopsy, and correct interpretation of imaging changes is paramount. This is particularly important following intra-uterine fetal death, where there may be fetal maceration. The aim of this study was to investigate whether any changes seen on a whole body fetal post mortem magnetic resonance imaging (PMMR) correspond to maceration at conventional autopsy. METHODS: We performed pre-autopsy PMMR in 75 fetuses using a 1.5 Tesla Siemens Avanto MR scanner (Erlangen, Germany). PMMR images were reported blinded to the clinical history and autopsy data using a numerical severity scale (0 = no maceration changes to 2 = severe maceration changes) for 6 different visceral organs (total 12). The degree of maceration at autopsy was categorized according to severity on a numerical scale (1 = no maceration to 4 = severe maceration). We also generated quantitative maps to measure the liver and lung T2. RESULTS: The mean PMMR maceration score correlated well with the autopsy maceration score (R(2) = 0.93). A PMMR score of ≥4.5 had a sensitivity of 91%, specificity of 64%, for detecting moderate or severe maceration at autopsy. Liver and lung T2 were increased in fetuses with maceration scores of 3-4 in comparison to those with 1-2 (liver p = 0.03, lung p = 0.02). CONCLUSIONS: There was a good correlation between PMMR maceration score and the extent of maceration seen at conventional autopsy. This score may be useful in interpretation of fetal PMMR
Control of Ultra-cold Inelastic Collisions by Feshbash Resonances and Quasi-One-Dimensional Confinement
Cold inelastic collisions of atoms or molecules are analyzed using very
general arguments. In free space, the deactivation rate can be enhanced or
suppressed together with the scattering length of the corresponding elastic
collision via a Feshbach resonance, and by interference of deactivation of the
closed and open channels. In reduced dimensional geometries, the deactivation
rate decreases with decreasing collision energy and does not increase with
resonant elastic scattering length. This has broad implications; e.g.,
stabilization of molecules in a strongly confining two-dimensional optical
lattice, since collisional decay of the highly vibrationally excited states due
to inelastic collisions is suppressed. The relation of our results with those
based on the Lieb-Liniger model are addressed.Comment: 5 pages, 1 figur
Extending Bauer's corollary to fractional derivatives
We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P.
M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative
systems with fractional derivatives. It was previously hoped that using
fractional derivatives in an action would allow us to derive a single retarded
equation of motion using a variational principle. It is proven that, under
certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys
Decoherence in a double-slit quantum eraser
We study and experimentally implement a double-slit quantum eraser in the
presence of a controlled decoherence mechanism. A two-photon state, produced in
a spontaneous parametric down conversion process, is prepared in a maximally
entangled polarization state. A birefringent double-slit is illuminated by one
of the down-converted photons, and it acts as a single-photon two-qubits
controlled not gate that couples the polarization with the transversal momentum
of these photons. The other photon, that acts as a which-path marker, is sent
through a Mach-Zehnder-like interferometer. When the interferometer is
partially unbalanced, it behaves as a controlled source of decoherence for
polarization states of down-converted photons. We show the transition from
wave-like to particle-like behavior of the signal photons crossing the
double-slit as a function of the decoherence parameter, which depends on the
length path difference at the interferometer.Comment: Accepted in Physical Review
Approximate joint measurement of qubit observables through an Arthur-Kelly type model
We consider joint measurement of two and three unsharp qubit observables
through an Arthur-Kelly type joint measurement model for qubits. We investigate
the effect of initial state of the detectors on the unsharpness of the
measurement as well as the post-measurement state of the system. Particular
emphasis is given on a physical understanding of the POVM to PVM transition in
the model and entanglement between system and detectors.Two approaches for
characterizing the unsharpness of the measurement and the resulting measurement
uncertainty relations are considered.The corresponding measures of unsharpness
are connected for the case where both the measurements are equally unsharp. The
connection between the POVM elements and symmetries of the underlying
Hamiltonian of the measurement interaction is made explicit and used to perform
joint measurement in arbitrary directions. Finally in the case of three
observables we derive a necessary condition for the approximate joint
measurement and use it show the relative freedom available when the observables
are non-orthogonal.Comment: 22 pages; Late
Cloning of Gaussian states by linear optics
We analyze in details a scheme for cloning of Gaussian states based on linear
optical components and homodyne detection recently demonstrated by U. L.
Andersen et al. [PRL 94 240503 (2005)]. The input-output fidelity is evaluated
for a generic (pure or mixed) Gaussian state taking into account the effect of
non-unit quantum efficiency and unbalanced mode-mixing. In addition, since in
most quantum information protocols the covariance matrix of the set of input
states is not perfectly known, we evaluate the average cloning fidelity for
classes of Gaussian states with the degree of squeezing and the number of
thermal photons being only partially known.Comment: 8 pages, 7 figure
Uncertainty Relation Revisited from Quantum Estimation Theory
By invoking quantum estimation theory we formulate bounds of errors in
quantum measurement for arbitrary quantum states and observables in a
finite-dimensional Hilbert space. We prove that the measurement errors of two
observables satisfy Heisenberg's uncertainty relation, find the attainable
bound, and provide a strategy to achieve it.Comment: manuscript including 4 pages and 2 figure
Optimal estimation of joint parameters in phase space
We address the joint estimation of the two defining parameters of a
displacement operation in phase space. In a measurement scheme based on a
Gaussian probe field and two homodyne detectors, it is shown that both
conjugated parameters can be measured below the standard quantum limit when the
probe field is entangled. We derive the most informative Cram\'er-Rao bound,
providing the theoretical benchmark on the estimation and observe that our
scheme is nearly optimal for a wide parameter range characterizing the probe
field. We discuss the role of the entanglement as well as the relation between
our measurement strategy and the generalized uncertainty relations.Comment: 8 pages, 3 figures; v2: references added and sections added to the
supplemental material; v3: minor changes (published version
Joint measurements of spin, operational locality and uncertainty
Joint, or simultaneous, measurements of non-commuting observables are
possible within quantum mechanics, if one accepts an increase in the variances
of the jointly measured observables. In this paper, we discuss joint
measurements of a spin 1/2 particle along any two directions. Starting from an
operational locality principle, it is shown how to obtain a bound on how sharp
the joint measurement can be. We give a direct interpretation of this bound in
terms of an uncertainty relation.Comment: Accepted for publication in Phys. Rev.
- …
