294 research outputs found

    A Fresh Look at Huntingtin mRNA Processing in Huntington\u27s Disease

    Get PDF
    Huntington\u27s disease (HD) is an inherited neurodegenerative disorder caused by a mutation that expands the polyglutamine (CAG) repeat in exon 1 of the huntingtin (HTT) gene. Wild-type HTT protein interacts with other proteins to protect cells against toxic stimuli, mediate vesicle transport and endocytosis, and modulate synaptic activity. Mutant HTT protein disrupts autophagy, vesicle transport, neurotransmitter signaling, and mitochondrial function. Although many of the activities of wild-type HTT protein and the toxicities of mutant HTT protein are characterized, less is known about the activities of HTT mRNA. Most putative HD therapies aim to target mutant HTT mRNA before it is translated into the protein. Therefore, it is imperative to learn as much as we can about how cells handle both wild-type and mutant HTT mRNA so that effective therapies can be designed. Here, we review the structure of wild-type and mutant HTT mRNA, with emphasis on their alternatively polyadenylated or spliced isoforms. We then consider the abundance of HTT mRNA isoforms in HD and discuss the potential implications of these findings. Evidence in the review should be used to guide future research aimed at developing mRNA-lowering therapies for HD

    Designing siRNA That Distinguish between Genes That Differ by a Single Nucleotide

    Get PDF
    Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide

    Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain

    Get PDF
    Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs) added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington\u27s disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context

    Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington\u27s disease

    Get PDF
    Neurons in Huntington\u27s disease exhibit selective morphological and subcellular alterations in the striatum and cortex. The link between these neuronal changes and behavioral abnormalities is unclear. We investigated relationships between essential neuronal changes that predict motor impairment and possible involvement of the corticostriatal pathway in developing behavioral phenotypes. We therefore generated heterozygote mice expressing the N-terminal one-third of huntingtin with normal (CT18) or expanded (HD46, HD100) glutamine repeats. The HD mice exhibited motor deficits between 3 and 10 months. The age of onset depended on an expanded polyglutamine length; phenotype severity correlated with increasing age. Neuronal changes in the striatum (nuclear inclusions) preceded the onset of phenotype, whereas cortical changes, especially the accumulation of huntingtin in the nucleus and cytoplasm and the appearance of dysmorphic dendrites, predicted the onset and severity of behavioral deficits. Striatal neurons in the HD mice displayed altered responses to cortical stimulation and to activation by the excitotoxic agent NMDA. Application of NMDA increased intracellular Ca(2+) levels in HD100 neurons compared with wild-type neurons. Results suggest that motor deficits in Huntington\u27s disease arise from cumulative morphological and physiological changes in neurons that impair corticostriatal circuitry

    Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep

    Get PDF
    siRNAs comprise a class of drugs that can be programmed to silence any target gene. Chemical engineering efforts resulted in development of divalent siRNAs (di-siRNAs), which support robust and long-term efficacy in rodent and nonhuman primate brains upon direct cerebrospinal fluid (CSF) administration. Oligonucleotide distribution in the CNS is nonuniform, limiting clinical applications. The contribution of CSF infusion placement and dosing regimen on relative accumulation, specifically in the context of large animals, is not well characterized. To our knowledge, we report the first systemic, comparative study investigating the effects of 3 routes of administration - intrastriatal (i.s.), i.c.v., and intrathecal catheter to the cisterna magna (ITC) - and 2 dosing regimens - single and repetitive via an implanted reservoir device - on di-siRNA distribution and accumulation in the CNS of Dorset sheep. CSF injections (i.c.v. and ITC) resulted in similar distribution and accumulation across brain regions. Repeated dosing increased homogeneity, with greater relative deep brain accumulation. Conversely, i.s. administration supported region-specific delivery. These results suggest that dosing regimen, not CSF infusion placement, may equalize siRNA accumulation and efficacy throughout the brain. These findings inform the planning and execution of preclinical and clinical studies using siRNA therapeutics in the CNS

    Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis

    Get PDF
    Quantification of microvascular network structure is important in a myriad of emerging research fields including microvessel remodeling in response to ischemia and drug therapy, tumor angiogenesis, and retinopathy. To mitigate analyst-specific variation in measurements and to ensure that measurements represent actual changes in vessel network structure and morphology, a reliable and automatic tool for quantifying microvascular network architecture is needed. Moreover, an analysis tool capable of acquiring and processing large data sets will facilitate advanced computational analysis and simulation of microvascular growth and remodeling processes and enable more high throughput discovery. To this end, we have produced an automatic and rapid vessel detection and quantification system using a MATLAB graphical user interface (GUI) that vastly reduces time spent on analysis and greatly increases repeatability. Analysis yields numerical measures of vessel volume fraction, vessel length density, fractal dimension (a measure of tortuosity), and radii of murine vascular networks. Because our GUI is open sourced to all, it can be easily modified to measure parameters such as percent coverage of non-endothelial cells, number of loops in a vascular bed, amount of perfusion and two-dimensional branch angle. Importantly, the GUI is compatible with standard fluorescent staining and imaging protocols, but also has utility analyzing brightfield vascular images, obtained, for example, in dorsal skinfold chambers. A manually measured image can be typically completed in 20 minutes to 1 hour. In stark comparison, using our GUI, image analysis time is reduced to around 1 minute. This drastic reduction in analysis time coupled with increased repeatability makes this tool valuable for all vessel research especially those requiring rapid and reproducible results, such as anti-angiogenic drug screening

    HTT-lowering reverses Huntington's disease immune dysfunction caused by NF kappa B pathway dysregulation

    Get PDF
    Huntington’s disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington’s disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington’s disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function–the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington’s disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington’s disease
    corecore