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Abstract: The electrochemical reduction of oxygen and nitric oxide was studied 

using cyclic voltammetry on point electrodes of Ni, Pt and Au in the temperature 

range 400 to 600oC. All the materials were more active towards the reduction of 

oxygen than towards the reduction of nitric oxide, except Pt at 400oC. As a general 

trend it was observed that the activity of the materials towards the reduction of 

oxygen increases more than the activity of the materials towards the reduction of 

nitric oxide with increasing temperature. The Ni wire was covered with a layer of 

NiO. The NiO layer inhibits the reduction of both nitric oxide and oxygen. No sign of 

the formation of an oxide layer on the platinum and gold wires was observed. Pt was 

the most active electrode material towards the reduction of nitric oxide. Au showed 

almost no activity towards the reduction of nitric oxide, but Au was active towards the 

reduction of oxygen. This implies that the triple phase boundary (3PB) catalyses the 

reduction of oxygen but not the reduction of nitric oxide, as Au is a catalytic inactive 

metal. All the materials were more active towards oxidation than towards reduction 

that is evolution of oxygen or oxidation of nitric oxide to nitrogen dioxide was more 

pronounced than the reduction reactions.  

 

Keywords: Gold, platinum, nickel, oxygen, nitric oxide, reduction 
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1. Introduction  

Removal of NOx from exhaust gasses is difficult when the exhaust gas contains 

excess oxygen. Several methods are under development, among them the 

electrochemical reduction of NOx. The main problem with this method is limited 

selectivity towards the reduction of NOx leading to a high current consumption [1]. 

The activity at low temperature might also be too low for practical purposes. In 

principle it is possible to electrochemically reduce nitric oxide in a net oxidising 

atmosphere as nitric oxide is less stable than oxygen. However, only a few electrode 

materials are known to act a selectively as cathodes for the electrochemical reduction 

of nitric oxide in a net oxidising atmosphere [2-22].    

With the aim of finding useful cathodes for the electrochemical reduction of NOx in a 

net oxidising atmosphere the cone shaped electrode technique has been used to study 

the electrochemical reduction of oxygen and nitric oxide [23-29]. It has been found 

that only a few electrode materials have a higher activity towards the reduction of 

nitric oxide than towards the reduction of oxygen. Ni has been proposed as a cathode 

for the electrochemical reduction of NOx in a net oxidising atmosphere [3-21]. Ni 

exhibits some selectivity towards the reduction of nitric oxide in a net oxidising 

atmosphere. Several noble metals have also been tried, among then Pt [30-34]. Pt has 

a higher activity towards the reduction of oxygen than towards the reduction of nitric 

oxide. Pt is therefore not selective towards the reduction of nitric oxide, leading to a 

low current efficiency.  

In this study wires of Ni, Pt and Au are studied as cathodes for the reduction of 

oxygen and nitric oxide using cyclic voltammetry. When a nickel wire is heated in air 

a layer of NiO is formed on the surface of the wire. This oxide layer can be reduced 

electrochemically. When using FactSage [35] to calculate the free energy it was found 
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that the reduction of NiO to Ni metal is placed at a potential of approximately -0.85 V 

vs. air at 500oC. 

 

2. Experimental  

Wires of Ni (Alfa), Pt (Umicore) and Au (Allgemeine Gold und Silberscheideanstalt) 

were used as received from the suppliers. The wires were placed in a two atmosphere 

set-up with air as a reference gas [24]. Approximately 60 g of weight (approximately 

60 MPa) was put on top of the wires. As a counter/reference electrode silver (added as 

silver paste, Engelhard) was used. The counter/reference electrode was large in size 

compared with the contact of the cone shaped electrode. As electrolyte a yttria 

stabilised zirconia (YSZ) tube (Vesuvius) with one end closed was used. The top of 

the YSZ tube was polished before use. The working electrode chamber was flushed 

with either air or 1 % nitric oxide in argon (Hede Nielsen), whereas the 

counter/reference electrode chamber was flushed with air. The set-up with the wires 

was then heated in air to 600oC, before recording the cyclic voltammograms. The 

cyclic voltammetry were performed using a Gamry Femtostat potentiostat. The 

measurements were done at temperatures of 600, 500 and 400oC. Sweep rates of 1 and 

10 mVs-1 was used throughout. The potential window spanned was either 0.2 to -0.8 

V vs. air or (in the case of Ni) 0.2 to -1.5 V vs. air (to make sure that the reduction of 

NiO to Ni is covered). The wires were equilibrated at open circuit voltage (OCV) in 

both atmospheres before recording the voltammograms. Electrochemical impedance 

spectroscopy (also using the Gamry instrument) was recorded at open circuit voltage 

to determine the series resistance (to find the contact area of the cone shaped 

electrodes using Newman’s formula). The EIS measurements were done at the 



 5

frequency interval 300.000 Hz to 0.05 Hz with 10 points measured at each decade, 

and an amplitude of 25 mV. Newman’s formula is given by [36]: 

 

 *4
1
σsR

r = ,         (1) 

 

where r is the radius of the contact between the electrode and the electrolyte. The 

specific conductivity of the electrolyte (YSZ), σ*, was taken from [37]. Rs is the 

intercept with the real axis in the impedance plot at high frequency. 

 

3. Results and Discussion  

The voltammograms recorded in air and in the nitric oxide containing atmosphere at 

500oC on the nickel wire can be found in figure 1. In air an anodic current (from 

oxygen evolution) is observed at potentials above approximately the open circuit 

voltage (0 V vs. air). Cathodic currents are observed below the open circuit voltage in 

air. In the nitric oxide containing atmosphere cathodic current are only observed at 

potentials below approximately -0.9 V vs. air. This indicates that NiO has no catalytic 

activity towards the reduction of nitric oxide. -0.9 V vs. air is just below the potential 

of the reduction of NiO to nickel metal. Nickel metal is therefore active towards the 

reduction of nitric oxide. A large inductive hysteresis upon reversal of the scan 

direction is observed in the cathodic region in both atmospheres. This indicates that 

nickel metal is more active towards both the reduction of oxygen and nitric oxide than 

NiO. That the activity of NiO is low towards the reduction of oxygen is in agreement 

with an earlier study of an electrode system containing NiO [38]. It is also observed 

that the activity towards the reduction of nitric oxide is lower than the activity of the 

NiO/Ni electrode towards the reduction of oxygen. This is in contrast to what is found 



 6

in literature. However, different configurations are used in this study and in the 

literature, where the Ni/NiO cathode was covered by a layer of electrolyte powder 

[10]. According to the authors this enhances the bonding of nitric oxide to the 

electrode surface. It should also be noted that nitric oxide is bound more strongly to 

Ni metal than oxygen [39]. In a mixture nitric oxide and oxygen will compete for the 

active sites. If nitric oxide is bound more strongly to the electrode than oxygen, the 

electrode may exhibit some selectivity towards the reduction of nitric oxide, even if 

the concentration of oxygen is higher than the concentration of nitric oxide. Some 

care should therefore be taken when making conclusions on data measured on cones 

in atmospheres containing only one gaseous component. However, nickel metal is 

more active towards the electrochemical reduction of oxygen than towards the 

electrochemical reduction of nitric oxide as shown in this study. The OCV in the 

nitric oxide containing atmosphere is very low, approximately -0.21 V vs. air. This is 

lower than expected for the reduction of nitric oxide to nitrogen. Using FactSage [35] 

the potential for the reduction of nitric oxide to nitrogen can be calculated as 

approximately 0.35 V vs. air. That the reduction of nitric oxide is initiated at much 

lower potentials can be explained due to a mixed potential. At the open circuit 

potential three reactions occur, the oxidation of nitric oxide to nitrogen dioxide, 

evolution of oxygen and reduction of nitric oxide to nitrogen. This implies that the 

reduction of nitric oxide is inhibited by the evolution of oxygen and the oxidation of 

nitric oxide to nitrogen dioxide. Similar situations are found for the two other 

electrode materials investigated in this study. However, the OCV differs for the three 

materials (Table 1). This shows that the three materials have very different catalytic 

properties. 
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The behaviour of the platinum wire is markedly different from the behaviour of the 

nickel wire in both atmospheres as seen in figure 2 where voltammograms recorded in 

air or the nitric oxide containing atmosphere at 500oC are plotted. As can be seen 

anodic currents are found above the OCV in air (approximately 0 V vs. air). As for the 

Ni/NiO electrode system the OCV is lower in the nitric oxide containing atmosphere 

than in air. The OCV in nitric oxide containing atmosphere is approximately -0.14 V 

vs. air, see Table 1. Above the OCV in the nitric oxide a cathodic current is observed. 

The activity of the platinum wire is higher towards the reduction of oxygen than 

towards the reduction of nitric oxide at a temperature of 500oC. This is even more 

marked at 600oC, (see figure 3). In figure 4 the cathodic currents are almost the same 

in the two atmospheres, showing that the activity towards the reduction of nitric oxide 

is higher than the activity towards the reduction of oxygen at this temperature. That 

the activity of the electrodes increases more for the reduction of oxygen than for the 

reduction of nitric oxide with increasing temperature is a general trend for all the 

materials investigated in this study. To obtain an energy efficient cell the reduction of 

nitric oxide should therefore be performed at low temperature.  

Voltammograms recorded on the Au wire at 500oC in air or 1% nitric oxide in argon 

are shown in figure 5. In air anodic currents are found above the OCV (approximately 

0 V vs. air), and cathodic currents are found below the OCV. In the nitric oxide 

containing atmosphere almost no activity is seen towards the reduction of nitric oxide. 

The Au electrode is therefore much more active towards the reduction of oxygen than 

towards the reduction of nitric oxide. This is observed at all temperatures investigated. 

This indicates the following. Gold is generally believed to be a catalytic inactive 

material. When a catalytic inactive material is used as a cathode, nitric oxide cannot 

be reduced. However, the reduction of oxygen proceeds at a measurable rate even 
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though the cathode material is catalytic inactive. This indicates that the triple phase 

boundary catalyses the electrochemical reduction of oxygen but not the 

electrochemical reduction of nitric oxide. This also shows that the reduction of 

oxygen will always be possible when an electronic conducting electrode is in contact 

with an ionic conducting electrolyte, whereas the reduction of nitric oxide only will be 

possible when an electrode material with suitable catalytic properties is used. 

This, together with the information that the OCV in the nitric oxide containing 

atmosphere always lay below the OCV in air, means that the reduction of nitric oxide 

will always be carried out along with the reduction of oxygen. The reduction of 

oxygen cannot be totally inhibited. This also shows that the size of the triple phase 

boundary must be optimised, not just maximised. Similar conclusions have been 

drawn in the literature [40].  

 

4. Conclusion  

Oxygen and nitric oxide can be reduced at electrodes of NiO/Ni, Pt and Au. The most 

active electrode for the reduction of nitric oxide is Pt. However, almost no activity of 

gold towards the reduction of nitric oxide was found at all temperatures. The 

reduction of nitric oxide is inhibited by oxygen evolution and nitrogen dioxide 

formation. All the electrodes are more active towards the reduction of oxygen than 

towards the reduction of nitric oxide except Pt at 400oC. The surface layer of NiO 

inhibits the reduction of oxygen and nitric oxide. Ni metal is also more active towards 

the reduction of oxygen than towards the reduction of nitric oxide. This study 

indicates that the triple-phase boundary catalyses the reduction of oxygen but not the 

reduction of nitric oxide. This means that the size of the triple phase boundary must 

be optimised, not just maximized. As a general trend it is found that the 
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electrochemical reduction of oxygen is more thermally activated than the 

electrochemical reduction of nitric oxide. It is therefore beneficial to run the reaction 

at the lowest possible temperature. However, at low temperature the activity is lower 

than at high temperature. An optimum operating temperature must therefore be found 

as a compromise between the two effects. 
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Table captions.  

 

Table 1. The OCV in 1 % nitric oxide in argon at a temperature of 500oC for the 

materials Ni, Pt and Au.
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Table 1. 

 
Material OCV in 1 % NO in Ar 
Ni/NiO -0.21 V vs. air 

Pt -0.14 V vs. air 
Au -0.23 V vs. air 
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Figure captions: 

 

Figure 1. Plot of the reduction nitric oxide and oxygen on a Ni/NiO electrode 

investigated using cyclic voltammetry at temperature of 500oC. 

 

Figure 2. Plot of the reduction of nitric oxide and oxygen on a Pt electrode at 500oC 

studied by the use of cyclic voltammetry. 

 

Figure 3. Plot of the electrochemical behaviour of a Pt wire at 400oC in either air or a 

nitric oxide containing atmosphere. 

 

Figure 4. Plot of a Pt wire in an atmosphere containing nitric oxide or air at 600oC 

studied by the use of cyclic voltammetry. 

 

Figure 5. Cyclic voltammograms recorded on an Au wire in either 1% nitric oxide in 

argon or in air at 500oC.   
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E vs. air /V
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E vs. air /V
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