1,887 research outputs found

    Solar radius and luminosity variations induced by the internal dynamo magnetic fields

    Full text link
    Although the occurrence of solar irradiance variations induced by magnetic surface features (e.g., sunspots, faculae, magnetic network) is generally accepted, the existence of intrinsic luminosity changes due to the internal magnetic fields is still controversial. This additional contribution is expected to be accompanied by radius variations, and to be potentially significant for the climate of the Earth. We aim to constrain theoretically the radius and luminosity variations of the Sun that are due to the effect of the variable magnetic fields in its interior associated with the dynamo cycle. We have extended a one-dimensional stellar evolution code to include several effects of the magnetic fields on the interior structure. We investigate different magnetic configurations, based on both observational constraints and on the output of state-of-the-art mean field dynamo models. We explore both step-like and simply periodic time dependences of the magnetic field peak strength. We find that the luminosity and radius variations are in anti-phase and in phase, respectively, with the magnetic field strength. For peak magnetic field strengths of the order of tens of kilogauss, luminosity variations ranging between 10^{-6} and 10^{-3} (in modulus) and radius variations between 10^{-6} and 10^{-5} are obtained. Modest but significant radius variations (up to 10^{-5} in relative terms) are obtained for magnetic fields of realistic strength and geometry, providing a potentially observable signature of the intrinsic variations. Establishing their existence in addition to the accepted surface effects would have very important implications for the understanding of solar-induced long-term trends on climate.Comment: 18 pages, 7 figures; accepted for publication in Astronomische Nachrichte

    Angular momentum transport efficiency in post-main sequence low-mass stars

    Full text link
    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results. We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ~3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.Comment: 8 pages, 6 figures; accepted for publication in Astronomy & Astrophysic

    Searching for a link between the presence of chemical spots on the surface of HgMn stars and their weak magnetic fields

    Full text link
    We present the results of mapping the HgMn star AR Aur using the Doppler Imaging technique for several elements and discuss the obtained distributions in the framework of a magnetic field topology.Comment: 2 pages, 1 figure, to appear in Proceedings of IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Sunspot areas and tilt angles for solar cycles 7-10

    Full text link
    Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims at estimating areas of sunspots observed by Schwabe in 1825-1867 and at calculating the tilt angles of sunspot groups. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, place the leading polarity on average 5.85+-0.25 closer to the equator, in good agreement with tilt angles obtained from 20th-century data sets. Sources of uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The sunspot area and tilt angle data are provided online.Comment: accepted for publication in Astron. & Astrophy

    A Waveguide for Bose-Einstein Condensates

    Get PDF
    We report on the creation of Bose-Einstein condensates of 87^{87}Rb in a specially designed hybrid, dipole and magnetic trap. This trap naturally allows the coherent transfer of matter waves into a pure dipole potential waveguide based on a doughnut beam. Specifically, we present studies of the coherence of the ensemble in the hybrid trap and during the evolution in the waveguide by means of an autocorrelation interferometer scheme. By monitoring the expansion of the ensemble in the waveguide we observe a mean field dominated acceleration on a much longer time scale than in the free 3D expansion. Both the autocorrelation interference and the pure expansion measurements are in excellent agreement with theoretical predictions of the ensemble dynamics

    Finite-temperature behavior of the Bose polaron

    Full text link
    We consider a mobile impurity immersed in a Bose gas at finite temperature. Using perturbation theory valid for weak coupling between the impurity and the bosons, we derive analytical results for the energy and damping of the impurity for low and high temperatures, as well as for temperatures close to the critical temperature TcT_c for Bose-Einstein condensation. These results show that the properties of the impurity vary strongly with temperature. In particular, the energy exhibits a non-monotonic behavior close to TcT_c, and the damping rises sharply close to TcT_c. We argue that this behaviour is generic for impurities immersed in an environment undergoing a phase transition that breaks a continuous symmetry. Finally, we discuss how these effects can be detected experimentally.Comment: 10 pages and 6 figure
    • …
    corecore