5 research outputs found

    Способы структурно-функциональной реализации сверхширокодиапазонных приемных трактов

    Get PDF
    Currently, radio monitoring systems are being actively improved in the direction of expanding the range of operating frequencies and the width of the spectrum of processed signals, which in some cases requires changing approaches to the design of their receiving devices. The purpose of the article is to substantiate the methods and circuit design options for implementing a receiver of an ultra-wide-range radio monitoring system and to justify the sequence of selecting the element base and calculating the parameters of the receiving path. The research proves expedient to choose the infradine structure of the radio receiving path as a basis, in which the frequency of the mirror channel is located far from the frequency of the main channel, so the mirror channel is easily suppressed by a simple low-pass filter. One of the main problems that arise when designing ultra-wideband radio receivers is the simultaneous provision of a large dynamic range and a low noise figure. To reduce the noise figure, a variant of constructing a path was proposed, starting with a low-noise amplifier with increased parameters of nonlinear selectivity, which is acceptable if there is a low probability of intermodulation combinations. The article suggests a receiver with an operating frequency range of 0.5–18 GHz and an analogto-digital converter with a speed of up to 10.4 GSPS. The element base was selected for the receiving devices and the main parameters of the path were calculated. A number of examples are used to analyze the ways to increase the dynamic range of a radio receiver and the influence of element base parameters on the device performance. The main technical characteristics of the radio receiver for effective operation of modern radio monitoring systems and the ways to increase the dynamic range thereof are described.В настоящее время происходит активное совершенствование систем радиомониторинга в направлении расширения диапазона рабочих частот и ширины спектра обрабатываемых сигналов, что в ряде случаев требует изменения подходов при проектировании их приемных устройств. Целью статьи является обоснование способов и схемотехнических вариантов реализации приемного устройства сверхширокодиапазонной системы радиомониторинга и обоснование последовательности выбора элементной базы и расчета параметров приемного тракта. Показано, что за основу целесообразно выбрать инфрадинную структуру радиоприемного тракта, в которой частота зеркального канала расположена далеко от частоты основного канала, поэтому зеркальный канал легко подавляется простым фильтром нижних частот. Одной из основных проблем, возникающих при проектировании сверхширокодиапазонных радиоприемных устройств, является одновременное обеспечение большого динамического диапазона и низкого коэффициента шума. Для уменьшения коэффициента шума был предложен вариант построения тракта, начиная с малошумящего усилителя с повышенными параметрами нелинейной избирательности, что является допустимым при малой вероятности появления интермодуляционных комбинаций. В статье предложено приемное устройство с рабочим диапазоном частот 0,5–18 ГГц и аналоговым-цифровым преобразователем со скоростью до 10,4 GSPS. Для приемных устройств была подобрана элементная база и произведен расчет основных параметров тракта. На ряде примеров проанализированы способы увеличения динамического диапазона радиоприемного устройства и влияние параметров элементной базы на технические характеристики устройства. Описаны основные техническими характеристики радиоприемного устройства для эффективной работы современных комплексов радиомониторинга и способы увеличения его динамического диапазона

    Расчет высоты и времени срабатывания устройства инициализации реактивного снаряда

    Get PDF
    The purpose of this article is to present a method for improving the accuracy of calculating the height and response time of the missile initialization device at a given height, as well as a method for its structural implementation. The paper considers a time option for calculating the response height. I**-t is based on measuring the height of the projectile's flight at five points equidistant in time, from which the negative increment in heights is calculated, a formula that describes the vertical component of the projectile flight is drawn, the numerical calculation of which allows us to determine the projectile response time at a given height. As a structural diagram of the device, it is proposed to use a homodyne structure, the main advantages of which are easiness to implement, a small number of components and, as a consequence, small dimensions.Цель данной статьи заключается в представлении способа повышения точности расчета высоты и времени срабатывания устройства инициализации реактивного снаряда на заданной высоте, а также способа его структурной реализации. Снаряд, вылетевший из направляющих носителя, испытывает на себе различные возмущающие факторы: сопротивление воздуха, состояние атмосферы, воздействие воздушного потока от лопастей вертолета и др. В работе рассматривается временной метод расчета высоты срабатывания. Он основан на измерении высоты полета снаряда в четырех равноудаленных по времени точках, на основании которых рассчитывается отрицательное приращение высот, составляется уравнение, описывающее вертикальную составляющую полета снаряда. Для измерения высоты полета над подстилающей поверхностью внутри снаряда размещается малогабаритный радиовысотомер. Численный расчет аппроксимирующего полинома по методу Кардано позволяет определить время срабатывания снаряда на заданной высоте. В качестве структурной схемы устройства предлагается использование гомодинной структуры, основными преимуществами которой являются простота реализации, малое количество компонентов и, как следствие, малые габариты

    Methods of structural and functional implementation of ultra-wide range receiving paths

    Get PDF
    Currently, radio monitoring systems are being actively improved in the direction of expanding the range of operating frequencies and the width of the spectrum of processed signals, which in some cases requires changing approaches to the design of their receiving devices. The purpose of the article is to substantiate the methods and circuit design options for implementing a receiver of an ultra-wide-range radio monitoring system and to justify the sequence of selecting the element base and calculating the parameters of the receiving path. The research proves expedient to choose the infradine structure of the radio receiving path as a basis, in which the frequency of the mirror channel is located far from the frequency of the main channel, so the mirror channel is easily suppressed by a simple low-pass filter. One of the main problems that arise when designing ultra-wideband radio receivers is the simultaneous provision of a large dynamic range and a low noise figure. To reduce the noise figure, a variant of constructing a path was proposed, starting with a low-noise amplifier with increased parameters of nonlinear selectivity, which is acceptable if there is a low probability of intermodulation combinations. The article suggests a receiver with an operating frequency range of 0.5–18 GHz and an analogto-digital converter with a speed of up to 10.4 GSPS. The element base was selected for the receiving devices and the main parameters of the path were calculated. A number of examples are used to analyze the ways to increase the dynamic range of a radio receiver and the influence of element base parameters on the device performance. The main technical characteristics of the radio receiver for effective operation of modern radio monitoring systems and the ways to increase the dynamic range thereof are described

    Methods of structural and functional implementation of ultra-wide range receiving paths

    Get PDF
    В настоящее время происходит активное совершенствование систем радиомониторинга в направлении расширения диапазона рабочих частот и ширины спектра обрабатываемых сигналов, что в ряде случаев требует изменения подходов при проектировании их приемных устройств. Целью статьи является обоснование способов и схемотехнических вариантов реализации приемного устройства сверхширокодиапазонной системы радиомониторинга и обоснование последовательности выбора элементной базы и расчета параметров приемного тракта. Показано, что за основу целесообразно выбрать инфрадинную структуру радиоприемного тракта, в которой частота зеркального канала расположена далеко от частоты основного канала, поэтому зеркальный канал легко подавляется простым фильтром нижних частот. Одной из основных проблем, возникающих при проектировании сверхширокодиапазонных радиоприемных устройств, является одновременное обеспечение большого динамического диапазона и низкого коэффициента шума. Для уменьшения коэффициента шума был предложен вариант построения тракта, начиная с малошумящего усилителя с повышенными параметрами нелинейной избирательности, что является допустимым при малой вероятности появления интермодуляционных комбинаций. В статье предложено приемное устройство с рабочим диапазоном частот 0,5–18 ГГц и аналоговым-цифровым преобразователем со скоростью до 10,4 GSPS. Для приемных устройств была подобрана элементная база и произведен расчет основных параметров тракта. На ряде примеров проанализированы способы увеличения динамического диапазона радиоприемного устройства и влияние параметров элементной базы на технические характеристики устройства. Описаны основные технические характеристики радиоприемного устройства для эффективной работы современных комплексов радиомониторинга и способы увеличения его динамического диапазона. Currently, radio monitoring systems are being actively improved in the direction of expanding the range of operating frequencies and the width of the spectrum of processed signals, which in some cases requires changing approaches to the design of their receiving devices. The purpose of the article is to substantiate the methods and circuit design options for implementing a receiver of an ultra-wide-range radio monitoring system and to justify the sequence of selecting the element base and calculating the parameters of the receiving path. The research proves expedient to choose the infradine structure of the radio receiving path as a basis, in which the frequency of the mirror channel is located far from the frequency of the main channel, so the mirror channel is easily suppressed by a simple low-pass filter. One of the main problems that arise when designing ultra-wide-band radio receivers is the simultaneous provision of a large dynamic range and a low noise figure. To reduce the noise figure, a variant of constructing a path was proposed, starting with a low noise amplifier with increased parameters of nonlinear selectivity, which is acceptable if there is a low probability of intermodulation combinations. The article suggests a receiver with an operating frequency range of 0.5–18 GHz and an analog-to-digital converter with a speed of up to 10.4 GSPS. The element base was selected for the receiving devices and the main parameters of the path were calculated. A number of examples are used to analyze the ways to increase the dynamic range of a radio receiver and the influence of element base parameters on the device performance.The main technical characteristics of the radio receiver for effective operation of modern radio monitoring systems and the ways to increase the dynamic range thereof are described
    corecore