
a SpringerOpen Journal

Pyshkin SpringerPlus 2014, 3:186
http://www.springerplus.com/content/3/1/186

RESEARCH Open Access

In the right order of brush strokes: a sketch of a
software philosophy retrospective
Evgeny Pyshkin

Abstract

This paper follows a discourse on software recognized as a product of art and human creativity progressing probably
for as long as software exists. A retrospective view on computer science and software philosophy development is
introduced. In so doing we discover parallels between software and various branches of human creative
manifestations. Aesthetic properties and mutual dependency of the form and matter of art works are examined in
their application to software programs. While exploring some philosophical and even artistic reflection on software
we consider extended comprehension of technical sciences of programming and software engineering within the
realm of liberal arts.

Keywords: Software philosophy; Art; Software aesthetics; Liberal arts; Computer science education

Introduction
In about 60 years of its history software did a stressed
way from an object of craft of professionals from highly
selected club to the contemporary social scene. In recent
years software manifested its pervasive nature consider-
ably and became available to various groups of people.
More and more people become software writers, not

only its users. To be an information-literate is one of
the crucial demands for member of postindustrial soci-
ety (Shapiro and Hughes 1996). In response, the nowadays
software understanding leads us to the thesis that one of
the most challenging aspects of current software develop-
ment is its ability to transform and to change the world
(DeMarco 2009). Attention to these aspects often over-
passes pure engineering strategy to complete the project
in time and within the resources limitations.
As noted in (Myers et al. 2011), “software we write today

potentially touches millions of people, either enabling
them to do their jobs effectively, or causing them untold
frustration and costing them in the form of lost work or
lost businesses”. Despite many formalized ways to repre-
sent data models, program structures, execution analysis
and verification, and project organization were discov-
ered, software engineering is still far from being an exact

Correspondence: pyshkin@icc.spbstu.ru
St. Petersburg State Polytechnical University, Institute of Computing and
Control, Polytechnicheskaya ul., 21, 195021, St. Petersburg, Russia

science. A psychologist Richie O’Bower noted that a pro-
grammer is rather not a mathematician but a philosopher
and a linguist all in one: ability to program is not simply
a kind of creative ability but the best one (O’Bower 1997).
Sergei Arkhipenkov stated even more strongly: “software
development is a kind of human activity which is mistak-
enly attributed to engineering” (Arkhipenkov 2012). But
even if we accept this rather emotional idea, we still under-
stand that it is impossible to say that writing software is
either entirely art or entirely engineering. Truly, there is
place for both components.
In software development there are disciplines where

engineering prevails. It seems hard to provide good basis
to estimate relative weights of art and engineering in
software creation. In the latter days, in addition to tra-
ditional focus on problem solving, algorithms and data
structures, hardware elements and architectures, design
and development methodologies, new areas of computer
science application are evolving. They include such areas
as information retrieval, machine learning, social and eth-
ical issues of the use of computers (and particularly in
regards to software products).
Since computer science is connected with many inter-

disciplinary efforts, its specific boundaries become fuzzy
(Walker and Kelemen 2009). Walker and Kelemen’s con-
sideration goes even further when they concluded that
computer science draws upon perspectives from many
other disciplines. Hence, it has a symbiotic relationship

© 2014 Pyshkin; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194662534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: pyshkin@icc.spbstu.ru

Pyshkin SpringerPlus 2014, 3:186 Page 2 of 6
http://www.springerplus.com/content/3/1/186

with the liberal arts and therefore might be considered
the ultimate of liberal arts disciplines. Interestingly, in
medieval times the university curriculum differed remark-
ably from the today’s understanding of humanities: within
the context of liberal arts students studied such disciplines
as grammar, logic, arithmetic, geometry, music, rhetoric,
and astronomy. Knuth noted that grammar, logic, and
arithmetic are important components of computer sci-
ence (Knuth 1974). Advancing with the consideration of
computer science and especially software science as art,
shouldn’t we stop with only three titles?
Since the first decades after emerging of comput-

ers and software related disciplines, both computer and
liberal arts researchers attempted to explore some phi-
losophy and artistic reflections on software engineering
(Knuth 1974; Eden 2007; Wing 2006; Bond 2005). Since
the appearance of software engineering in about late 60s,
there were attempts to apply philosophical concepts to
this discipline in order to reflect on engineers’ activities,
but these attempts were rather limited.
Software engineering hasn’t been appropriately ana-

lyzed with highlighting a philosophical discourse on com-
puter science. In addition to classical Knuth’s research
(Knuth 2001) we can cite recent works in (Gruner 2011)
and (Northover et al. 2008). Our current paper is another
contribution to this yet unsystematic collection. However
we concede eventual criticism on a bitty structure of this
essay and evident lack of rational arguments and estima-
tions, most of them being of quite suggestive nature.

Good is beautiful, bad is ugly
The thesis about software aesthetic properties considered
as products of programming creative nature, its com-
plexity and its social significance isn’t novel. As far back
as 1972 Andrey Ershov remarked: “in its creative nature
programming goes a little further than most other pro-
fessions, and comes to mathematics and writing” (Ershov
1972). In turn, Dijkstra remarked that it occurs that a
computer program may fascinate us by its logical ele-
gance, but appears often totally unfitted for the human
perception (Dijkstra 1976). About a decade later Knuth
mentioned that “computer programs are nice to write, and
well-written computer programs are nice to read” (Knuth
1984). Knuth’s Literate Programming was then a novel
transitional approach connecting (probably for the first
time) a process of the source code creation with a process
of the source code apprehension in terms of pleasant-
ness that computer programs may effect. Later, the idea
of writing programs as narratives found its reimplementa-
tion in other fields of software engineering, for example,
in supporting acceptance test stories in behavior driven
development.
However Arkhipenkov still complained in 2012: “I don’t

need a language allowing writing good programs, I’m

searching for a language making impossible to write bad
programs.” Seems to be “crying out in the wilderness”
(Matthew 3:1-3)? Indeed, if we only were blessed to have
such a language in literature, we would read only out-
standing novels.
It seems less realistic to wait for a software language

guaranteeing good software: nothing changed over the
years – excellent programs are written by excellent devel-
opers. Despite there is probably no reliable metric to
measure how does the developers’ creativity affect their
productivity and software product quality, there is intu-
itive expectation that it affects them strongly.
Here’s another example. Main points of the Zen of

Python emphasize more surface impressions of software
than its technical quality: beautiful is better than ugly
not only in external appearance (Peters 2004). Wilson and
Oram complain that university students are rarely taught
how to see the software elegance, unlike to academic tra-
ditions in other creative fields like painting, plastic art or
architecture (Oram and Wilson 2007). It is essential that
architects study to know how to look at buildings, com-
posers study to know how to learn from others’ music
scores, but programmersmostly look at others’ works only
to fix bugs. They don’t know how to see the code beauty.
Unfortunately we often don’t have enough time for this.
Beautiful solutions aren’t obvious. Although a concept

of (code) beauty are very subjective, there is a gut feel-
ing: if a programmer is able to explain what makes the
code beautiful, code beauty may be considered as one of
properties allowing judging the software quality. The key
question which is not answered here is what does beauty
mean. This is a kind of term that we use without special
definition. Here is another suggestive observation: often
it is hard to find rationale for judging something beauti-
ful or to convince that the code is beautiful. Unfortunately,
it happens that people consider much easier to argue the
inverse.

Themanner andmatter in software compositions
In this article we follow our previous work focused on
problems of programming teaching (Pyshkin 2011). With
help of the philosophical categories of form and matter
applied to software considered as a product of human cre-
ative ability, we believe that the form doesn’t simply clothe
the content of the work and separates it from the out-
side being, just like if it was the case of literature, visual
arts and even the case of music. The form rather connects
the creation to the external world: the manner and matter
being interpenetrating and mutually dependent (McElroy
1888)
In contrast to MacLennan’s consideration (MacLennan

2006), where the matter of software engineering is consid-
ered to be the hardware and the form is the software itself
which organizes resources provided by the hardware into

Pyshkin SpringerPlus 2014, 3:186 Page 3 of 6
http://www.springerplus.com/content/3/1/186

a dynamic purposeful process, we apply both categories
to software. Our analogy is also in accord with Gruner’s
mention from (Gruner 2011): “Like a poem, software has
thus also aesthetic qualities (which are often forgotten in
the literature on software ontology), such as form (even
beauty in its form), legibility, etc.”
Hence, producing readable software is one of the essen-

tial abilities of a software engineer who, similar to a
painter or amusician, programs not only the computer but
also the act of reproduction of developer’s creation in the
beholder’s mind.
Let us introduce a glance to Russian humanities. As

Russian theologian and mathematician Pavel Florensky
considered, paintings become works of art not at the
moment of their creation, but at the moment when they
are recognized by a recipient. Otherwise they aren’t more
understandable than a music score (being a sort of two-
dimensional graphics) before it sounds by instrumental or
intellectual implementation. Nevertheless, composers say
that an experienced musician is able to judge the music
work’s value simply by viewing the music score graphics’
beauty or, on the contrary, it’s ugliness (Florensky 1991):
they may be experienced to execute (and therefore to
reproduce) the work mentally. Furthermore, a composer
writing a symphony normally works with a music score
which is an abstract representation of composer’s inten-
tions. The adequacy of such a representation strongly
depends on the author’s ability to map the notation to the
sound mentally (Edmonds 2007). Remember the example
of Beethoven who lost hearing in his later years.
Thus, not only the concepts underlie software devel-

opment approaches, but also a sense of aesthetics that
fast every enthusiastic developer has: “a sense of what is
pleasant to perform and what is unpleasant to endure,
what is beautiful to behold and what is intolerably ugly”
(Bond 2005). It advances the Knuth’s note about programs’
beauty introduced as elegant statements of program’s
tasks and symphonic (sic!) composition of its parts (Knuth
2001).
Since a source code is a textual form of a program-

ming code (therefore these two types of codes are often
supposed to be synonyms), the primary difficulty of code
understanding is its interpretation as a textual artifact
(Berry 2011). To a great extend, understanding software
code is based on capabilities to deal with languages. Even
for visual arts it is often hard to explain what makes the
creation product beautiful. Zeki supposed that it is caused
by the fact that the human brain’s visual system is much
more developed than its language centers, since it has had
much more time to evolve (Zeki and Nash 1999).

Software art manifestations
As a matter of things, an idea to consider software as an
art is quite recent, at least if we compare it to the genesis

of software itself. But the question whether the criteria
of other arts should be or may be applied to the domain
of programming and software engineering, remains
open.
We can recognize at least three types of software man-

ifestations as an art. First, software as a media art, if
the external appearance of software in form of interac-
tive media is exploited at most. Second, “contestable”,
or competitive art, if programmers compete in aesthetic
appearance of programs written under some conditions
that may be artificial. Contests of one-line programs could
serve as a model. Third, and probably the most impor-
tant for us, if we consider software internal implementa-
tion as an art, and discuss beauty attributes in the code
itself.
Aesthetic satisfaction may come in different ways.

Knuth mentioned that “pleasure is significantly enhanced
when we accomplish something with limited tools”
(Knuth 1974). I remember the epoch of so called pro-
grammable calculators with very restricted memory facil-
ities. What a pleasure and proud it was, when I wrote
a program solving a square equation and featuring to
deal with complex roots. It had size of about 40 per
cent less comparing to the “standard” solutions in pub-
lished tutorials and used only high efficient stack mem-
ory (that could now be called as a processor cache) to
manipulate with data instead of calculator registers which
were accessible at much slower speed. It meant that I
gained miraculously both execution time and memory
space.
One more sample comes from an academic lab where

I revised a student’s program dealing with constructing
and processing triangles defined by the plain coordinates
of its three angles. We converted the solution which pri-
marily didn’t step over the bounds of six numeric values
to a really nice construction defined in terms of geome-
try model presented in Figure 1 (do you still remember

Figure 1 Constructing a triangle.

Pyshkin SpringerPlus 2014, 3:186 Page 4 of 6
http://www.springerplus.com/content/3/1/186

that geometry was one of the liberal arts in ancient uni-
versities?). Thus the solution has been shifted from the
operational orientation to almost pure data model. The
following fragment in Java provides some glimpse of that
refactoring (see Listing 1):

Listing 1. Geometry example
public class FigureFactory {

public Triangle createTriangle(

Point p1, Point p2, Point p3) {

if(p1.equals(p2)) return null;

Line line = new Line(p1, p2);

if(line.include(p3)) return null;

return new Triangle(p1, p2, p3);

}

//...

}

public class Figure {

//...

public abstract boolean include(

Point p);

}

public class Line extends Figure {

// Line definition: ax+by+c=0

double a;

double b;

double c;

Line(Point p1, Point p2) {

this.a = p2.y-p1.y;

this.b = p1.x-p2.x;

this.c = -p1.x*a-p1.y*b;

}

@Override

public boolean include(Point p) {

if(a*p.x + b*p.y + c == 0)

return true;

return false;

}

// ...

}

Another sort of programming artistic manifestation is
so called code poems. Inspired probably by the famous
Perl poem byHopkins (1995), the artist and engineer Ishac
Bertran launched a project inviting people to write poetry
in any programming language (Solon 2012). Indeed, many
years ago, when I wrote a demo C functions to skip com-
ments in style of ANSI C code, I felt vaguely that I wrote
a sort of poem, in Bertran’s terms. Listing 2 represents
one verse:

Listing 2. closeComment() function.

// Skipping the comment

int closeComment() {

for(; ;) {

if((lit = getc(fin)) == EOF)

return EOF;

switch(lit) {

case ’*’:

// Expecting comment closing...

while(1) {

if((lit = getc(fin)) == EOF)

return EOF;

switch(lit) {

case ’*’: continue;

case ’/’: return 0;

default : break;

}

break;

}

continue;

default : ;

}

}

}

In contrast to the previous example dealing with “geo-
metric types”, the above solution (for the process pre-
sented in Figure 2 as a state chart) is a kind of pure
control structure (what makes it nice as I dare to say),
the only data processing being the checking of the just
scanned character.
So Knuth was right as he mentioned that even routine

processes may sometimes be beautiful.
Another good example of such a routine process comes

from the text processing domain. The task of parsing

Figure 2 Statechart for the closeComment() function.

Pyshkin SpringerPlus 2014, 3:186 Page 5 of 6
http://www.springerplus.com/content/3/1/186

Figure 3 Fragment of arithmetic expression grammar rules.

parenthesis-free expressions is one of traditional tasks
used in the academic courses of programming. The prob-
lem of constructing an expression recursive parser is
complex enough to explain elements of compiler theory,
lexical and syntactic analysis, methods of parser construc-
tion, a concept of abstract syntax tree as well as the usage
of polish notation to simplify expression calculation.
At the same time an expression recursive parser is

manageable to meet academic requirements. One could
say that arithmetic expression recursive production rules
illustrate a kind of ideal software requirements since the
target program structure strongly relies on it. Isn’t it
beautiful if the programming language implementation
follows the grammar rules almost directly? The hierarchy
of function or class method calls (Listing 3 represents a
fragment of a parser class definition) may be considered
as text based visualization of the production rules shown
in Figure 3.

Listing 3. The expression recursive parser implementation
fragment.

void Parser::expression()

{

item();

Lexema lexema = lexer.get();

switch(lexema.type)

{

case TOKENTYPE_OPERATION:

switch(lexema.operation)

{

case OPERATION_ADD:

case OPERATION_SUBTRACT:

lexer.next();

expression();

polish.push_back(lexema);

break;

}

}

}

void Parser::item()

{

factor();

Lexema lexema = lexer.get();

switch(lexema.type)

{

case TOKENTYPE_OPERATION:

switch(lexema.operation)

{

case OPERATION_MULT:

case OPERATION_DIVIDE:

lexer.next();

item();

polish.push_back(lexema);

break;

}

}

}

Conclusion
Despite a computer program is primarily aimed to get
some practical results of its execution, the object of a pro-
gram isn’t effectively a heartless automaton performing
sets of instructions represented in special form. The pro-
gram is oriented to a human reader’s attention: we attempt
to explain, what we would like to get from a computer
and in which way. It gives us a newer comprehension of
the Dijkstra’s note about programs that get their sense
only during execution (Dahl and Hoare 1972). So, we
may paraphrase on the earlier note: experienced software
composers are equally able to judge the code value (i.e.
code quality) by viewing code graphics’ beauty or, on the
contrary, its ugliness.
There are software practices (extreme programming,

for example) where code inspection is one of the essen-
tial production stages. Static analysis and unit testing are
also examples of code recognition and rediscovering in
the course of its verification. This leads us to one more
interpretation of a Kent Beck’s famous maxim, “Hold on
there – I never said that test-first was a testing technique.
In fact, if I remember correctly, I explicitly stated that it
wasn’t” (Beck 2001).
It’s hard to model adequately the human creative abil-

ity, but it’s possible to model the creative process itself,
so to be able to recognize and to judge the artifacts
being products of this process whether they are music
compositions, pieces of painting, literary efforts or, in a
case we are interested here in at most, software projects.
Considering software as art changes our understand-
ing of software and shifts the focus of the art from
the object orientation to a broader system orientation
(Edmonds 2007).

Pyshkin SpringerPlus 2014, 3:186 Page 6 of 6
http://www.springerplus.com/content/3/1/186

To conclude these rather scattered notes I’d like to cite
two statements coming from the domains of fine arts and
literature. I slightly revised them to produce some coun-
terpoint to main ideas of this essay. Paul Klee stated that
an eye follows the ways that were already managed inside
the worka. Let’s note that these ways should be paved
carefully and in the right order, just like in the Japanese
calligraphy: unless you write a kanji character in the right
order of brush strokes, it would never look beautiful! b

Endnotes
aAs quoted in George Perec’s La Vie, mode d’emploi

(Perec 1978) (translated from French).
bParaphrased from Alex Kerr’s Lost Japan (Kerr 1996).

Competing interests
The author declares that he has no competing interests.

Received: 4 March 2014 Accepted: 4 April 2014
Published: 11 April 2014

References
Arkhipenkov S (2012) Thinking about programming: from Aristotle to

Wittgenstein In: Software engineering conference in Russia (CEE-SECR),
2012 8th Central and Eastern European, Moscow, Russia. http://2012.secr.
ru/2012/presentations/arkhipenkov_28_article.pdf

Beck K (2001) Aim, fire [test-first coding]. Softw IEEE 18(5): 87–89
Berry DM (2011) The philosophy of software, Palgrave Macmillan, London, UK
Bond GW (2005) Software as art. Commun ACM 48(8): 118–124
Dahl OJ, Hoare CAR (1972) Chapter III: Hierarchical program structures In:

Structured Programming. Academic Press Ltd., London, UK
DeMarco T (2009) Software engineering: an idea whose time has come and

gone. IEEE Softw 26(4): 95–96
Dijkstra EW (1976) A discipline of programming, Vol. 1, Prentice-Hall,

Englewood Cliffs, New Jersey
Eden AH (2007) Three paradigms of computer science. Minds Mach 17(2):

135–167
Edmonds E (2007) The art of programming or programs as art. Front Artif Intell

Appl 161: 119
Ershov AP (1972) Aesthetics and the human factor in programming. Commun

ACM 15(7): 501–505. doi: 10.1145/361454.361458, http://doi.acm.org/10.
1145/361454.361458

Florensky P (1991) Analiz prostranstvennosti v khudozhestvennykh
proizvedeniyakh In: “Stat’i i issledovaniya po istorii i filosofii iskusstva i
arheologii”, vol 2000. Moscow, Mysl’, pp 79–421. (In Russian)

Gruner S (2011) Problems for a philosophy of software engineering. Minds
Mach 21(2): 275–299

Hopkins S (1995) Listen In: The Princeton encyclopedia of poetry and poetics,
4th ed., vol 2012. Princeton University Press, NJ, USA, pp 396–397

Kerr A (1996) Lost Japan, Lonely Planet, Melbourne, Australia
Knuth DE (1974) Computer programming as an art. Commun ACM 17(12):

667–673
Knuth, DE (1984) Literate programming. Comput J 27(2): 97–111
Knuth DE (2001) Things a computer scientist rarely talks about. CSLI

Publications, Stanford, CA, USA
MacLennan BJ (2006) Aesthetics in software engineering. Tech. rep., Technical

Report UT-CS-06-579, Department of Computer Science, University of
Tennessee, Knoxville

McElroy JG (1888) Matter and manner in literary composition. Mod Lang Notes
3: 29–33

Myers GJ, Sandler C, Badgett T (2011) The art of software testing. Wiley,
Hoboken, NJ, USA

Northover M, Kourie DG, Boake A, Gruner S, Northover A (2008) Towards a
philosophy of software development: 40 years after the birth of software
engineering. J Gen Philos Sci 39(1): 85–113

O’Bower R (1997) Programming as a best creative specialty

Oram A, Wilson G (2007) Beautiful code: leading programmers explain how
they think. O’Reilly Media, Inc., Sebastopol, CA, USA

Perec G (1978) La vie mode d’emploi, Hachette, Paris, France
Peters T (2004) The zen of python. Available from any Python interpreter by

typing import this. http://legacy.python.org/dev/peps/pep-0020/
Pyshkin E (2011) Teaching programming: What we miss in academia In:

Software engineering conference in Russia (CEE-SECR), 2011 7th Central
and Eastern European. IEEE Computer Society, Washington, DC, USA,
pp 1–6

Shapiro JJ, Hughes SK (1996) Information literacy as a liberal art? Educom Rev
31: 31–35

Solon O (2012) Creative project invites developers to write ’code poems’.
http://www.wired.com/underwire/2012/02/code-poems/

Walker M, Kelemen C (2009) Computer science and the liberal arts: a
philosophical examination. Trans Comput Educ 10(1): 2:1–2:10

Wing JM (2006) Computational thinking. Commun ACM 49(3): 33–35
Zeki S, Nash J (1999) Inner vision: an exploration of art and the brain, vol 415.

Oxford University Press, Oxford

doi:10.1186/2193-1801-3-186
Cite this article as: Pyshkin: In the right order of brush strokes: a sketch of
a software philosophy retrospective. SpringerPlus 2014 3:186.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://2012.secr.ru/2012/presentations/arkhipenkov_28_article.pdf
http://2012.secr.ru/2012/presentations/arkhipenkov_28_article.pdf
http://doi.acm.org/10.1145/361454.361458
http://doi.acm.org/10.1145/361454.361458
http://legacy.python.org/dev/peps/pep-0020/
http://www.wired.com/underwire/2012/02/code-poems/

	Abstract
	Keywords

	Introduction
	Good is beautiful, bad is ugly
	The manner and matter in software compositions
	Software art manifestations
	Conclusion
	Endnotes
	Competing interests
	References

