156 research outputs found

    Rounding of first-order phase transitions and optimal cooperation in scale-free networks

    Full text link
    We consider the ferromagnetic large-qq state Potts model in complex evolving networks, which is equivalent to an optimal cooperation problem, in which the agents try to optimize the total sum of pair cooperation benefits and the supports of independent projects. The agents are found to be typically of two kinds: a fraction of mm (being the magnetization of the Potts model) belongs to a large cooperating cluster, whereas the others are isolated one man's projects. It is shown rigorously that the homogeneous model has a strongly first-order phase transition, which turns to second-order for random interactions (benefits), the properties of which are studied numerically on the Barab\'asi-Albert network. The distribution of finite-size transition points is characterized by a shift exponent, 1/ν~=.26(1)1/\tilde{\nu}'=.26(1), and by a different width exponent, 1/ν=.18(1)1/\nu'=.18(1), whereas the magnetization at the transition point scales with the size of the network, NN, as: mNxm\sim N^{-x}, with x=.66(1)x=.66(1).Comment: 8 pages, 6 figure

    Complexity spectrum of some discrete dynamical systems

    Full text link
    We first study birational mappings generated by the composition of the matrix inversion and of a permutation of the entries of 3×3 3 \times 3 matrices. We introduce a semi-numerical analysis which enables to compute the Arnold complexities for all the 9!9! possible birational transformations. These complexities correspond to a spectrum of eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated birational, or even rational, transformations yield algebraic values for their complexities.Comment: 1 LaTex fil

    Density of critical clusters in strips of strongly disordered systems

    Full text link
    We consider two models with disorder dominated critical points and study the distribution of clusters which are confined in strips and touch one or both boundaries. For the classical random bond Potts model in the large-q limit we study optimal Fortuin-Kasteleyn clusters by combinatorial optimization algorithm. For the random transverse-field Ising chain clusters are defined and calculated through the strong disorder renormalization group method. The numerically calculated density profiles close to the boundaries are shown to follow scaling predictions. For the random bond Potts model we have obtained accurate numerical estimates for the critical exponents and demonstrated that the density profiles are well described by conformal formulae.Comment: 9 pages, 9 figure

    On the complexity of some birational transformations

    Get PDF
    Using three different approaches, we analyze the complexity of various birational maps constructed from simple operations (inversions) on square matrices of arbitrary size. The first approach consists in the study of the images of lines, and relies mainly on univariate polynomial algebra, the second approach is a singularity analysis, and the third method is more numerical, using integer arithmetics. Each method has its own domain of application, but they give corroborating results, and lead us to a conjecture on the complexity of a class of maps constructed from matrix inversions

    A classification of four-state spin edge Potts models

    Full text link
    We classify four-state spin models with interactions along the edges according to their behavior under a specific group of symmetry transformations. This analysis uses the measure of complexity of the action of the symmetries, in the spirit of the study of discrete dynamical systems on the space of parameters of the models, and aims at uncovering solvable ones. We find that the action of these symmetries has low complexity (polynomial growth, zero entropy). We obtain natural parametrizations of various models, among which an unexpected elliptic parametrization of the four-state chiral Potts model, which we use to localize possible integrability conditions associated with high genus curves.Comment: 5 figure

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    Degeneracy Algorithm for Random Magnets

    Full text link
    It has been known for a long time that the ground state problem of random magnets, e.g. random field Ising model (RFIM), can be mapped onto the max-flow/min-cut problem of transportation networks. I build on this approach, relying on the concept of residual graph, and design an algorithm that I prove to be exact for finding all the minimum cuts, i.e. the ground state degeneracy of these systems. I demonstrate that this algorithm is also relevant for the study of the ground state properties of the dilute Ising antiferromagnet in a constant field (DAFF) and interfaces in random bond magnets.Comment: 17 pages(Revtex), 8 Postscript figures(5color) to appear in Phys. Rev. E 58, December 1st (1998

    Ground state non-universality in the random field Ising model

    Full text link
    Two attractive and often used ideas, namely universality and the concept of a zero temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are non-universal. However, we also show that at finite temperature the thermal order parameter exponent one half is restored so that temperature is a relevant variable. The broader implications of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of two in Eq. 2., added a paragraph in conclusions for clarit

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure
    corecore