22 research outputs found

    Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis

    Get PDF
    Chikungunya virus (CHIKV) is associated with outbreaks of infectious rheumatic disease in humans. Using a mouse model of CHIKV arthritis and myositis, we show that tumor necrosis factor-α, interferon-γ, and monocyte chemotactic protein 1 (MCP-1) were dramatically induced in tissues from infected mice. The same factors were detected in the serum of patients with CHIKV-induced polyarthralgia and polyarthritis, with MCP-1 levels being particularly elevated. Bindarit (MCP inhibitor) treatment ameliorated CHIKV disease in mice. Histological analysis of muscle and joint tissues showed a reduction in inflammatory infiltrate in infectedmice treated with bindarit. These results suggest that bindarit may be useful in treating CHIKV-induced arthritides in humans.Facultad de Ciencias Exacta

    Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis

    Get PDF
    Chikungunya virus (CHIKV) is associated with outbreaks of infectious rheumatic disease in humans. Using a mouse model of CHIKV arthritis and myositis, we show that tumor necrosis factor-α, interferon-γ, and monocyte chemotactic protein 1 (MCP-1) were dramatically induced in tissues from infected mice. The same factors were detected in the serum of patients with CHIKV-induced polyarthralgia and polyarthritis, with MCP-1 levels being particularly elevated. Bindarit (MCP inhibitor) treatment ameliorated CHIKV disease in mice. Histological analysis of muscle and joint tissues showed a reduction in inflammatory infiltrate in infectedmice treated with bindarit. These results suggest that bindarit may be useful in treating CHIKV-induced arthritides in humans.Facultad de Ciencias Exacta

    Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis

    Get PDF
    Chikungunya virus (CHIKV) is associated with outbreaks of infectious rheumatic disease in humans. Using a mouse model of CHIKV arthritis and myositis, we show that tumor necrosis factor-α, interferon-γ, and monocyte chemotactic protein 1 (MCP-1) were dramatically induced in tissues from infected mice. The same factors were detected in the serum of patients with CHIKV-induced polyarthralgia and polyarthritis, with MCP-1 levels being particularly elevated. Bindarit (MCP inhibitor) treatment ameliorated CHIKV disease in mice. Histological analysis of muscle and joint tissues showed a reduction in inflammatory infiltrate in infectedmice treated with bindarit. These results suggest that bindarit may be useful in treating CHIKV-induced arthritides in humans.Facultad de Ciencias Exacta

    Serotype-Specific Differences in the Risk of Dengue Hemorrhagic Fever: An Analysis of Data Collected in Bangkok, Thailand from 1994 to 2006

    Get PDF
    The four dengue viruses (DENV) represent the most common human arbovirus infections in the world and are currently a challenging problem, particularly in the tropical and subtropical regions of Asia and the Americas. Infection with DENV may produce symptoms of varying severity. While access to care, appropriate interventions, host genetic factors, and previous exposure to DENV are all known to affect the outcome of the infection, it is not entirely understood why some individuals develop more severe disease. It has been hypothesized that the four dengue serotypes differ in disease severity and clinical manifestations. This analysis assessed whether there were significant differences in severity of disease caused by the dengue serotypes in a pediatric population in Thailand. We found significant and non-significant correlations between dengue serotype 2 infection and more severe dengue disease. We also found that individual serotypes varied in disease severity between study years, perhaps supporting the hypothesis that the particular sequences of primary and secondary DENV infections influence disease severity

    Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    No full text
    Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available

    Specific IgM and IgG responses in primary and secondary dengue virus infections determined by enzyme-linked immunosorbent assay

    No full text
    IgM- and IgG-capture ELISAs are widely used as diagnostic tests for confirmation of dengue virus infection. The positive rate of anti-dengue IgM and IgG detection was examined in primary and secondary dengue virus infections in the setting of a provincial hospital using IgM- and IgG-capture ELISAs. Disease day 1 was defined as the day of onset of symptoms. In total, 232 plasma samples were collected from 106 confirmed dengue cases consisting of 12 primary and 94 secondary infections. In primary infection, anti-dengue IgM was detected in 4 out of 5 samples collected on disease day 5 and in all the 21 samples collected on disease day 6 or later. Specific IgG was detected in 2 out of 5 samples collected on day 12, and in 5 out of 6 samples collected on disease days 13–15, but was not detected in samples collected on disease day 10 or earlier. In secondary infection, IgM was not detected in the samples on disease days 2 and 3, but detected in 20 out of 79 samples collected on days 4–6, in 44 out of 65 on disease days 7–11 and in 40 out of 51 samples on disease days 12–14. In contrast, specific IgG was detected in 21 out of 60 samples on disease days 4 and 5, in 13 out of 19 on disease day 6, in 62 out of 65 on disease days 7–11 and in all the samples collected on disease day 12 or later. The result indicate that seroconversion rates of IgM and IgG are different between primary and secondary infections, and suggest that detection of specific IgM and IgG is necessary for determining dengue virus infection and for differentiating primary and secondary dengue infections

    Mayaro: an emerging viral threat?

    No full text
    corecore