916 research outputs found

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    Morphological processing as we know it: An analytical review of morphological effects in visual word identification

    Get PDF
    The last 40 years have witnessed a growing interest in the mechanisms underlying the visual identification of complex words. A large amount of experimental data has been amassed, but although a growing number of studies are proposing explicit theoretical models for their data, no comprehensive theory has gained substantial agreement among scholars in the field. We believe that this is due, at least in part, to the presence of several controversial pieces of evidence in the literature and, consequently, to the lack of a well-defined set of experimental facts that any theory should be able to explain. With this review, we aim to delineate the state of the art in the research on the visual identification of complex words. By reviewing major empirical evidences in a number of different paradigms such as lexical decision, word naming, and masked and unmasked priming, we were able to identify a series of effects that we judge as reliable or that were consistently replicated in different experiments, along with some more controversial data, which we have tried to resolve and explain. We concentrated on behavioral and electrophysiological studies on inflected, derived and compound words, so as to span over all types of complex words. The outcome of this work is an analytical summary of well-established facts on the most relevant morphological issues, such as regularity, morpheme position coding, family size, semantic transparency, morpheme frequency, suffix allomorphy and productivity, morphological entropy, and morpho-orthographic parsing. In discussing this set of benchmark effects, we have drawn some methodological considerations on why contrasting evidence might have emerged, and have tried to delineate a target list for the construction of a new all-inclusive model of the visual identification of morphologically complex words. \ua9 2012 Amenta and Crepaldi

    Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury.

    Get PDF
    OBJECTIVE: This study tests the hypothesis that injury to the somatosensory cortex is associated with periorbital allodynia and increases in nociceptive neuropeptides in the brainstem in a mouse model of controlled cortical impact (CCI) injury. METHODS: Male C57BL/6 mice received either CCI or craniotomy-only followed by weekly periorbital von Frey (mechanical) sensory testing for up to 28 days post-injury. Mice receiving an incision only and naïve mice were included as control groups. Changes in calcitonin gene-related peptide (CGRP) and substance P (SP) within the brainstem were determined using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. Activation of ionized calcium-binding adaptor molecule-1-labeled macrophages/microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were evaluated using immunohistochemistry because of their potential involvement in nociceptor sensitization. RESULTS: Incision-only control mice showed no changes from baseline periorbital von Frey mechanical thresholds. CCI significantly reduced mean periorbital von Frey thresholds (periorbital allodynia) compared with baseline and craniotomy-only at each endpoint, analysis of variance P \u3c .0001. Craniotomy significantly reduced periorbital threshold at 14 days but not 7, 21, or 28 days compared with baseline threshold, P \u3c .01. CCI significantly increased SP immunoreactivity in the brainstem at 7 and 14 days but not 28 days compared with craniotomy-only and controls, P \u3c .001. CGRP levels in brainstem tissues were significantly increased in CCI groups compared with controls (incision-only and naïve mice) or craniotomy-only mice at each endpoint examined, P \u3c .0001. There was a significant correlation between CGRP and periorbital allodynia (P \u3c .0001, r = -0.65) but not for SP (r = 0.20). CCI significantly increased the number of macrophage/microglia in the injured cortex at each endpoint up to 28 days, although cell numbers declined over weeks post-injury, P \u3c .001. GFAP(+) immunoreactivity was significantly increased at 7 but not 14 or 28 days after CCI, P \u3c .001. Craniotomy resulted in transient periorbital allodynia accompanied by transient increases in SP, CGRP, and GFAP immunoreactivity compared with control mice. There was no increase in the number of macrophage/microglia cells compared with controls after craniotomy. CONCLUSION: Injury to the somatosensory cortex results in persistent periorbital allodynia and increases in brainstem nociceptive neuropeptides. Findings suggest that persistent allodynia and increased neuropeptides are maintained by mechanisms other than activation of macrophage/microglia or astrocyte in the injured somatosensory cortex

    The fruitless effort of growing a fruitless tree: Early morpho.orthographic and morpho-semantic effects in sentence reading

    Get PDF
    In this eye-tracking study, we investigated how semantics inform morphological analysis at the early stages of visual word identification in sentence reading. We exploited a feature of several derived Italian words, that is, that they can be read in a \u201cmorphologically transparent\u201d way or in a \u201cmorphologically opaque\u201d way according to the sentence context to which they belong. This way, each target word was embedded in a sentence eliciting either its transparent or opaque interpretation. We analyzed whether the effect of stem frequency changes according to whether the (very same) word is read as a genuine derivation (transparent context) vs. as a pseudo-derived word (opaque context). Analysis of the first fixation durations revealed a stem-word frequency effect in both opaque and transparent contexts, thus showing that stems were accessed whether or not they contributed to word meaning, that is, word decomposition is indeed blind to semantics. However, while the stem-word frequency effect was facilitatory in the transparent context, it was inhibitory in the opaque context, thus showing an early involvement of semantic representations. This pattern of data is revealed by words with short suffixes. These results indicate that derived and pseudo-derived words are segmented into their constituent morphemes also in natural reading; however, this blind- to-semantics process activates morpheme representations that are semantically connote

    Consistency measures individuate dissociating semantic modulations in priming paradigms: A new look on semantics in the processing of (complex) words

    Get PDF
    In human language the mapping between form and meaning is arbitrary, as there is no direct connection between words and the objects that they represent. However, within a given language, it is possible to recognize systematic associations that support productivity and comprehension. In this work, we focus on the consistency between orthographic forms and meaning, and we investigate how the cognitive system may exploit it to process words. We take morphology as our case study, since it arguably represents one of the most notable examples of systematicity in form-meaning mapping. In a series of three experiments, we investigate the impact of form-meaning mapping in word processing by testing new consistency metrics as predictors of priming magnitude in primed lexical decision. In Experiment 1, we re-analyse data from five masked morphological priming studies and show that Orthography-Semantics-Consistency explains independent variance in priming magnitude, suggesting that word semantics is accessed already at early stages of word processing and that crucially semantic access is constrained by word orthography. In Experiment 2 and 3, we investigate whether this pattern is replicated when looking at semantic priming. In Experiment 2, we show that Orthography-Semantics-Consistency is not a viable predictor of priming magnitude with longer SOA. However, in Experiment 3, we develop a new semantic consistency measure based on the semantic density of target neighbourhoods. This measure is shown to significantly predict independent variance in semantic priming effect. Overall our results indicate that consistency measures provide crucial information for the understanding of word processing. Specifically, the dissociation between measures and priming paradigms shows that different priming conditions are associated with the activation of different semantic cohorts

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page
    corecore