5,481 research outputs found

    The dependence of cosmological parameters estimated from the microwave background on non-gaussianity

    Get PDF
    The estimation of cosmological parameters from cosmic microwave experiments has almost always been performed assuming gaussian data. In this paper the sensitivity of the parameter estimation to different assumptions on the probability distribution of the fluctuations is tested. Specifically, adopting the Edgeworth expansion, I show how the cosmological parameters depend on the skewness of the C_l spectrum. In the particular case of skewness independent of the multipole number I find that the primordial slope, the baryon density and the cosmological constant increase with the skewness.Comment: 4 pages, 4 figure

    Chaplygin gas in light of recent Integrated Sachs--Wolfe effect data

    Get PDF
    We investigate the possibility of constraining Chaplygin dark energy models with current Integrated Sachs Wolfe effect data. In the case of a flat universe we found that generalized Chaplygin gas models must have an energy density such that Ωc>0.55\Omega_c >0.55 and an equation of state w<−0.6w <-0.6 at 95% c.l.. We also investigate the recently proposed Silent Chaplygin models, constraining Ωc>0.55\Omega_c >0.55 and w<−0.65w <-0.65 at 95% c.l.. Better measurements of the CMB-LSS correlation will be possible with the next generation of deep redshift surveys. This will provide independent and complementary constraints on unified dark energy models such as the Chaplygin gas.Comment: 5 pages, 4 figure

    Signals of primordial phase transitions on CMB maps

    Get PDF
    The analysis of the CMB anisotropies is a rich source of cosmological informations. In our study, we simulated the signals produced by the relics of a first order phase transition occured during an inflationary epoch in the early Universe. These relics are bubbles of true vacuum that leave a characteristic non-Gaussian imprint on the CMB. We use different statistical estimators in order to evaluate this non-Gaussianity. We obtain some limits on the allowed values of the bubble parameters comparing our results with the experimental data. We also predict the possibility to detect this signal with the next high resolution experiments.Comment: 2 pages, submitted to Proceedings of 9th Marcel Grossmann meetin

    Detecting stable massive neutral particles through particle lensing

    Full text link
    Stable massive neutral particles emitted by astrophysical sources undergo deflection under the gravitational potential of our own galaxy. The deflection angle depends on the particle velocity and therefore non-relativistic particles will be deflected more than relativistic ones. If these particles can be detected through neutrino telescopes, cosmic ray detectors or directional dark matter detectors, their arrival directions would appear aligned on the sky along the source-lens direction. On top of this deflection, the arrival direction of non-relativistic particles is displaced with respect to the relativistic counterpart also due to the relative motion of the source with respect to the observer; this induces an alignment of detections along the sky projection of the source trajectory. The final alignment will be given by a combination of the directions induced by lensing and source proper motion. We derive the deflection-velocity relation for the Milky Way halo and suggest that searching for alignments on detection maps of particle telescopes could be a way to find new particles or new astrophysical phenomena.Comment: 17 pages, 7 figures. Accepted by PR

    Present limits to cosmic bubbles from the COBE-DMR three point correlation function

    Get PDF
    The existence of large scale voids in several galaxy surveys suggests the occurence of an inflationary first order phase transition. This process generates primordial bubbles that, before evolving into the present voids, leave at decoupling a non-Gaussian imprint on the CMB. I this paper we evaluate an analytical expression of the collapsed three point correlation function from the bubble temperature fluctuations. Comparing the results with COBE-DMR measures, we obtain upper limits on the allowed non-Gaussianity and hence on the bubble parameters.Comment: 4 pages, 3 figures; submitted to MNRA

    A Fast Frequency Sweep – Green’s Function Based Analysis of Substrate Integrated Waveguide

    Get PDF
    In this paper, a fast frequency sweep technique is applied to the analysis of Substrate Integrated Waveguides performed with a Green’s function technique. The well-known Asymptotic Waveform Evaluation technique is used to extract the Padù approximation of the frequency response of Substrate Integrated Waveguides devices. The analysis is extended to a large frequency range by adopting the Complex Frequency Hopping algorithm. It is shown that, with this technique, CPU time can be reduced of almost one order of magnitude with respect to a point by point computation

    An entirely analytical cosmological model

    Full text link
    The purpose of the present study is to show that in a particular cosmological model, with an affine equation of state, one can obtain, besides the background given by the scale factor, Hubble and deceleration parameters, a representation in terms of scalar fields and, more important, explicit mathematical expressions for the density contrast and the power spectrum. Although the model so obtained is not realistic, it reproduces features observed in some previous numerical studies and, therefore, it may be useful in the testing of numerical codes and as a pedagogical tool.Comment: 4 pages (revtex4), 4 figure

    Observational Constraints on Silent Quartessence

    Full text link
    We derive new constraints set by SNIa experiments (`gold' data sample of Riess et al.), X-ray galaxy cluster data (Allen et al. Chandra measurements of the X-ray gas mass fraction in 26 clusters), large scale structure (Sloan Digital Sky Survey spectrum) and cosmic microwave background (WMAP) on the quartessence Chaplygin model. We consider both adiabatic perturbations and intrinsic non-adiabatic perturbations such that the effective sound speed vanishes (Silent Chaplygin). We show that for the adiabatic case, only models with equation of state parameter ∣α∣â‰Č10−2 |\alpha |\lesssim 10^{-2} are allowed: this means that the allowed models are very close to \LambdaCDM. In the Silent case, however, the results are consistent with observations in a much broader range, -0.3<\alpha<0.7.Comment: 7 pages, 12 figures, to be submitted to JCA
    • 

    corecore