1,416 research outputs found
Cycles of passive versus active diapirism recorded along an exposed salt wall
Acknowledgements GIA is grateful for funding from the Carnegie Trust for the Universities of Scotland that enabled fieldwork for this project. RW was supported by the Israel Science Foundation (ISF grant No. 1245/11). SM was supported by the Israel Science Foundation (ISF grant No. 1436/14). We would like to thank Chris Talbot and Yohann Poprawski for careful and constructive reviews. The authors appreciate the help of Nicolas Waldmann in precisely locating the positons of dated unconformities.Peer reviewedPostprin
Managing affect in learners' questions in undergraduate science
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Society for Research into Higher Education.This article aims to position students' classroom questioning within the literature surrounding affect and its impact on learning. The article consists of two main sections. First, the act of questioning is discussed in order to highlight how affect shapes the process of questioning, and a four-part genesis to question-asking that we call CARE is described: the construction, asking, reception and evaluation of a learner's question. This work is contextualised through studies in science education and through our work with university students in undergraduate chemistry, although conducted in the firm belief that it has more general application. The second section focuses on teaching strategies to encourage and manage learners' questions, based here upon the conviction that university students in this case learn through questioning, and that an inquiry-based environment promotes better learning than a simple ‘transmission’ setting. Seven teaching strategies developed from the authors' work are described, where university teachers ‘scaffold’ learning through supporting learners' questions, and working with these to structure and organise the content and the shape of their teaching. The article concludes with a summary of the main issues, highlighting the impact of the affective dimension of learning through questioning, and a discussion of the implications for future research
Beyond Passswords: Usage and Policy Transformation
The purpose of this research is to determine whether the transition to a two-factor authentication system is more secure than a system that relied only on what users “know” for authentication. While we found that factors that made passwords inherently vulnerable did not transfer to the PIN portion of a two-factor authentication system, we did find significant problems relating to usability, worker productivity, and the loss and theft of smart cards. The new authentication method has disrupted our ability to stay connected to ongoing mission issues, forced some installations to cut off remote access for their users and in one instance, caused a reserve unit to regress 10 years in their notification and recall procedures. The best-case scenario for lost productivity due to users leaving their CAC at work, in their computer, is costing 261 work years per year with an estimated cost of 10.4 million payroll dollars. Finally, the new authentication method is causing an increase in the loss or theft of CACs, our primary security mechanism for accessing DoD installations, at a rate of 28,222 a year. A single tool, such as the CAC, for all systems and services, carries much power, are we prepared for the responsibility
Cox-2 Inhibition Enhances the Activity of Sunitinib in Human Renal Cell Carcinoma Xenografts
Background: Sunitinib (Su), a tyrosine kinase inhibitor of VEGFR, is effective at producing tumour response in clear cell renal cell carcinoma (cRCC), but resistance to therapy is inevitable. As COX-2 is a known mediator of tumour growth, we explored the potential benefit of COX-2 inhibition in combination with VEGFR inhibition in attempts at delaying tumour progression on Su. Methods: COX-2 expression was compared with areas of hypoxia in tumours that progressed on Su vs untreated tumours. Mice bearing human cRCC xenografts were treated with Su and the COX-2 inhibitor, celecoxib, and the effects on tumour growth were assessed. Sequential vs concurrent regimens were compared. Results: COX-2 expression was increased in cRCC xenografts in areas of tumour hypoxia. The combination of Su and celecoxib achieved longer times to tumour progression compared to treatment with either agent alone or to untreated control animals in four models. This effect was seen with concurrent but not with sequential therapy. Conclusion: COX-2 inhibition can extend the effectiveness of VEGFR inhibition. This effect is dependent on the timing of therapy. Clinical trials combining Su and COX-2 inhibitors should be considered as a means delaying time to progression on sunitinib in patients with metastatic cRCC
The Sunyaev-Zel'dovich Infrared Experiment: A Millimeter-wave Receiver for Cluster Cosmology
Measurements of the Sunyaev-Zel'dovich (S-Z) effect towards distant clusters
of galaxies can be used to determine the Hubble constant and the radial
component of cluster peculiar velocities. Determination of the cluster peculiar
velocity requires the separation of the two components of the S-Z effect, which
are due to the thermal and bulk velocities of the intracluster plasma. The two
components can be separated practically only at millimeter (mm) wavelengths.
Measurements of the S-Z effect at mm wavelengths are subject to minimal
astrophysical confusion and, therefore, provide an important test of results
obtained at longer wavelengths. We describe the instrument used to make the
first significant detections of the S-Z effect at millimeter wavelengths. This
instrument employs new filter, detector, and readout technologies to produce
sensitive measurements of differential sky brightness stable on long time
scales. These advances allow drift scan observations which achieve high
sensitivity while minimizing common sources of systematic error.Comment: 19 pages, 15 postscript figures, LaTeX(aaspptwo.sty), ApJ(in press
The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees
We describe the BOOMERANG North America (BNA) instrument, a balloon-borne
bolometric radiometer designed to map the Cosmic Microwave Background (CMB)
radiation with 0.3 deg resolution over a significant portion of the sky. This
receiver employs new technologies in bolometers, readout electronics,
millimeter-wave optics and filters, cryogenics, scan and attitude
reconstruction. All these subsystems are described in detail in this paper. The
system has been fully calibrated in flight using a variety of techniques which
are described and compared. It has been able to obtain a measurement of the
first peak in the CMB angular power spectrum in a single balloon flight, few
hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB)
experiment.Comment: 40 pages, 22 figures, submitted to Ap
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Characterising bed-parallel slip during gravity-driven deformation
Acknowledgements RW acknowledges the Israeli government GSI DS project 40706. SM acknowledges the Israel Science Foundation (ISF grant No. 1645/19) and the Ministry of National Infrastructures, Energy and Water Resources (grant #214-17-027). We thank Fabrizio Agosta for efficient editorial handling, together with Chris Morley and an anonymous reviewer who provided constructive comments that helped improve the paper.Peer reviewedPublisher PD
- …
