7,209 research outputs found

    Anti-GZK effect in UHECR spectrum

    Full text link
    In this paper we discuss the anti-GZK effect that arises in the framework of the diffusive propagation of Ultra High Energy (UHE) protons. This effect consists in a jump-like increase of the maximum distance from which UHE protons can reach the observer. The position of the jump is independent of the Intergalactic Magnetic Field (IMF) strength and depends only on the energy losses of protons, namely on the transition energy from adiabatic and pair-production energy losses. The Ultra High Energy Cosmic Rays (UHECR) spectrum presents a low-energy steepening approximately at this energy, which is very close to the position of the observed second knee. The dip, seen in the universal spectrum as a signature of the proton interaction with the Cosmic Microwave Background (CMB) radiation, is also present in the case of diffusive propagation in magnetic fields.Comment: 4 pages, 4 eps figures, talk given at IFAE 2005: Incotri Fisica Alte Energie, Catania, Italy, 30 March - 2 April 200

    Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations

    Full text link
    The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2−0.05+0.07r=0.2^{+0.07}_{-0.05}, challenged predictions from most inflationary models of a lower value for rr. More recent results by Planck on polarized dust emission show that the observed tensor modes signal is compatible with pure foreground emission. A more significant constraint on rr was then obtained by a joint analysis of Planck, BICEP2 and Keck Array data showing an upper limit to the tensor to scalar ratio r≀0.12r\le 0.12, excluding the case r=0r=0 with low statistical significance. Forthcoming measurements by BICEP3, the Keck Array, and other CMB polarization experiments, open the possibility for making the fundamental measurement of rr. Here we discuss how rr sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. We also consider the constraints on such scenarios given by recent data from ultrahigh energy cosmic ray observatories which set the limit on super-heavy dark matter particles lifetime. We discuss how super-heavy dark matter can be discovered by a precise measurement of rr combined with future observations of ultra high energy cosmic rays.Comment: 17 pages, 14 eps figures, accepted for publication in JCA

    Disappointing model for ultrahigh-energy cosmic rays

    Full text link
    Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) EeV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} \simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.Comment: 4 pages, 7 figures, the talk presented by A. Gazizov at NPA5 Conference, April 3-8, 2011, Eilat, Israe

    A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays

    Get PDF
    The dip is a feature in the diffuse spectrum of ultra-high energy (UHE) protons caused by electron-positron pair production on the cosmic microwave background (CMB) radiation. For a power-law generation spectrum E−2.7E^{-2.7}, the calculated position and shape of the dip is confirmed with high accuracy by the spectra observed by the Akeno-AGASA, HiRes, Yakutsk and Fly's Eye detectors. When the particle energies, measured in these detectors, are calibrated by the dip, their fluxes agree with a remarkable accuracy. The predicted shape of the dip is quite robust. The dip is only modified strongly when the fraction of nuclei heavier than protons is high at injection, which imposes some restrictions on the mechanisms of acceleration operating in UHECR sources. The existence of the dip, confirmed by observations, implies that the transition from galactic to extragalactic cosmic rays occurs at E \lsim 1\times 10^{18} eV. We show that at energies lower than a characteristic value Ecr≈1×1018E_{\rm cr}\approx 1\times 10^{18} eV, the spectrum of extragalactic cosmic rays flattens in all cases of interest, and it provides a natural transition to a steeper galactic cosmic ray spectrum. This transition occurs at some energy below EcrE_{\rm cr}, corresponding to the position of the so-called second knee. We discuss extensively the constraints on this model imposed by current knowledge of acceleration processes and sources of UHECR and compare it with the traditional model of transition at the ankle.Comment: Version Accepted for Publication in Astroparticle Physics (minor changes

    Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale

    Get PDF
    I show that it is possible to formulate the Relativity postulates in a way that does not lead to inconsistencies in the case of space-times whose short-distance structure is governed by an observer-independent length scale. The consistency of these postulates proves incorrect the expectation that modifications of the rules of kinematics involving the Planck length would necessarily require the introduction of a preferred class of inertial observers. In particular, it is possible for every inertial observer to agree on physical laws supporting deformed dispersion relations of the type E2−c2p2−c4m2+f(E,p,m;Lp)=0E^2- c^2 p^2- c^4 m^2 + f(E,p,m;L_p)=0, at least for certain types of ff.Comment: Same formulas and results as in 1st version, but a change of notation is introduced in order to clarify that the studied illustrative example is consistent with the R.P. for both choices of the overall sign. 1 ref added and 2 refs upgraded. Some rewording of the text in Sec5, and addition of an analogy with background fields in ordinary electromagnetism which I use to illustrate difference between space-times with an observer-independent Lp, and space-times in which Lp is introduced without modifications of Special Relativit

    Analytic calculations of the spectra of ultra high energy cosmic ray nuclei. II. The general case of background radiation

    Full text link
    We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of ultra high energy cosmic ray nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the cosmic microwave background radiation, in the present paper we generalize this computation to all relevant background radiations, including infra-red and visible/ultra-violet radiations, collectively referred to as extragalactic background light. The analytic solutions allow transparent physical interpretation of the obtained spectra. Extragalactic background light plays an important role at intermediate energies of ultra high energy cosmic ray nuclei. The most noticeable effect of the extragalactic background light is the low-energy tail in the spectrum of secondary nuclei.Comment: The paper is the second part of a two papers series, it is composed by 25 pages and 16 eps figures, version accepted for publication on Astroparticle Physic

    Propagation of UHECRs in cosmological backgrounds: some results from SimProp

    Full text link
    Ultra-High-Energy Cosmic Ray (UHECR) nuclei propagating in cosmological radiation backgrounds produce secondary particles detectable at Earth. SimProp is a one dimensional code for extragalactic propagation of UHECR nuclei, inspired by the kinetic approach of Aloisio et al. As in this approach, only a subset of nuclei and nuclear channels are used as representative. We discuss the validation of the code and present applications to UHECR experimental results. In particular we present the expected fluxes of neutrinos produced in some astrophysical scenario.Comment: Poster presented by A. Di Matteo at the 33rd International Cosmic Ray Conference, Rio De Janeiro (Brasil) July 2-9 201

    Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Full text link
    We use an updated version of {\it SimProp}, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.Comment: 15 pages, 8 figures, some reference added, version accepted for publication in JCA
    • 

    corecore