9 research outputs found

    Gerbode defect following endocarditis and misinterpreted as severe pulmonary arterial hypertension

    Get PDF
    <p>Abstract</p> <p>A Gerbode -type defect is a ventricular septal defect communicating directly between the left ventricle and right atrium. It is usually congenital, but rarely is acquired, as a complication of endocarditis. This can be anatomically possible because the normal tricuspid valve is more apically displaced than the mitral valve. However, identification of an actual communication is often extremely difficult, so a careful and meticulous echocardiogram should be done in order to prevent echocardiographic misinterpretation of this defect as pulmonary arterial hypertension. The large systolic pressure gradient between the left ventricle and the right atrium would expectedly result in a high velocity systolic Doppler flow signal in right atrium and it can be sometimes mistakably diagnosed as tricuspid regurgitant jet simulating pulmonary arterial hypertension.</p> <p>We present a rare case of young woman, with endocarditis who presented with severe pulmonary arterial hypertension. The preoperative diagnosis of left ventricle to right atrial communication (acquired Gerbode defect) was suspected initially by echocardiogram and confirmed at the time of the surgery.</p> <p>A point of interest, apart from the diagnostic problem, was the explanation for its mechanism and presentation. The probability of a bacterial etiology of the defect is high in this case.</p

    Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma

    Get PDF
    BackgroundPathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. MethodsOmental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). ResultsThe performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. ConclusionsCT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application

    Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants

    No full text
    The level of pollution has reached the dimensions that threaten human health, with the rapid urbanization and the increase of energy consumption especially in developing countries. Every year in the world, millions of people lose their lives because of air pollution. Heavy metals have a separate precaution in pollutants, especially in terms of human health, because they can remain intact in nature for long periods of time, they tend to bioaccumulate and some are toxic or carcinogenic even at low concentrations. Therefore, monitoring of heavy metal pollution and determination of risky areas is very important. Biomonitors are the most commonly used methods for monitoring heavy metal pollution. However, determining which plants and organelles are more suitable for monitoring the metal is essential in order to ensure that the monitoring is reliable. In this study, it was aimed to determine the variations of the concentration of Ni, Pb, and Cd elements depending on the traffic density in leaves, seeds, and branches of Ailanthus altissima, Biota orientalis, Platanus orientalis, and Pyracantha coccinea which are grown in areas with heavy, low dense, and non-traffic areas. As a result of the study, it was determined that concentrations of Ni, Pb, and Cd increased depending on traffic density. According to the results obtained, it was determined that seeds and branches of Biota orientalis were the most suitable species and organelles to determine Ni pollution. The leaves of Ailanthus altissima are very suitable for monitoring the pollution of Pb and Cd. © 2018, Springer Nature B.V
    corecore