3,856 research outputs found

    Asymptotic homogenisation in strength and fatigue durability analysis of composites

    Get PDF
    This is the post-print version of the Article. Copyright @ 2003 Kluwer Academic Publishers.Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength as the structure period tends to zero is proved and its limiting value is estimated.This work was supported under the research grant GR/M24592 from the Engineering and Physical Sciences Research Council, UK

    Homogenization of the one-dimensional wave equation

    Full text link
    We present a method for two-scale model derivation of the periodic homogenization of the one-dimensional wave equation in a bounded domain. It allows for analyzing the oscillations occurring on both microscopic and macroscopic scales. The novelty reported here is on the asymptotic behavior of high frequency waves and especially on the boundary conditions of the homogenized equation. Numerical simulations are reported

    Effective macroscopic dynamics of stochastic partial differential equations in perforated domains

    Full text link
    An effective macroscopic model for a stochastic microscopic system is derived. The original microscopic system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes or heterogeneities. The homogenized effective model is still a stochastic partial differential equation but defined on a unified domain without holes. The solutions of the microscopic model is shown to converge to those of the effective macroscopic model in probability distribution, as the size of holes diminishes to zero. Moreover, the long time effectivity of the macroscopic system in the sense of \emph{convergence in probability distribution}, and the effectivity of the macroscopic system in the sense of \emph{convergence in energy} are also proved

    Smoluchowski-Kramers approximation in the case of variable friction

    Full text link
    We consider the small mass asymptotics (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The limit of the solution in the classical sense does not exist in this case. We study a modification of the Smoluchowski-Kramers approximation. Some applications of the Smoluchowski-Kramers approximation to problems with fast oscillating or discontinuous coefficients are considered.Comment: already publishe

    Homogenization in magnetic-shape-memory polymer composites

    Full text link
    Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a large change of shape to the presence of an external magnetic field. As an alternative for the difficult to manifacture single crystal of these alloys we study composite materials in which small magnetic-shape-memory particles are embedded in a polymer matrix. The macroscopic properties of the composite depend strongly on the geometry of the microstructure and on the characteristics of the particles and the polymer. We present a variational model based on micromagnetism and elasticity, and derive via homogenization an effective macroscopic model under the assumption that the microstructure is periodic. We then study numerically the resulting cell problem, and discuss the effect of the microstructure on the macroscopic material behavior. Our results may be used to optimize the shape of the particles and the microstructure.Comment: 17 pages, 4 figure

    Long Term Stabilization of Expanding Aortic Aneurysms by a Short Course of Cyclosporine A through Transforming Growth Factor-Beta Induction

    Get PDF
    Abdominal aortic aneurysms (AAAs) expand as a consequence of extracellular matrix destruction, and vascular smooth muscle cell (VSMC) depletion. Transforming growth factor (TGF)-beta 1 overexpression stabilizes expanding AAAs in rat. Cyclosporine A (CsA) promotes tissue accumulation and induces TGF -beta1 and, could thereby exert beneficial effects on AAA remodelling and expansion. In this study, we assessed whether a short administration of CsA could durably stabilize AAAs through TGF-beta induction. We showed that CsA induced TGF-beta1 and decreased MMP-9 expression dose-dependently in fragments of human AAAs in vitro, and in animal models of AAA in vivo. CsA prevented AAA formation at 14 days in the rat elastase (diameter increase: CsA: 131.9±44.2%; vehicle: 225.9±57.0%, P = 0.003) and calcium chloride mouse models (diameters: CsA: 0.72±0.14 mm; vehicle: 1.10±0.11 mm, P = .008), preserved elastic fiber network and VSMC content, and decreased inflammation. A seven day administration of CsA stabilized formed AAAs in rats seven weeks after drug withdrawal (diameter increase: CsA: 14.2±15.1%; vehicle: 45.2±13.7%, P = .017), down-regulated wall inflammation, and increased αSMA-positive cell content. Co-administration of a blocking anti-TGF-beta antibody abrogated CsA impact on inflammation, αSMA-positive cell accumulation and diameter control in expanding AAAs. Our study demonstrates that pharmacological induction of TGF-beta1 by a short course of CsA administration represents a new approach to induce aneurysm stabilization by shifting the degradation/repair balance towards healing

    The Role of Mesotocin on Social Bonding in Pinyon Jays

    Get PDF
    The neuropeptide oxytocin influences mammalian social bonding by facilitating the building and maintenance of parental, sexual, and same‐sex social relationships. However, we do not know whether the function of the avian homologue mesotocin is evolutionarily conserved across birds. While it does influence avian prosocial behavior, mesotocin\u27s role in avian social bonding remains unclear. Here, we investigated whether mesotocin regulates the formation and maintenance of same‐sex social bonding in pinyon jays (Gymnorhinus cyanocephalus), a member of the crow family. We formed squads of four individually housed birds. In the first, “pair‐formation” phase of the experiment, we repeatedly placed pairs of birds from within the squad together in a cage for short periods of time. Prior to entering the cage, we intranasally administered one of three hormone solutions to both members of the pair: mesotocin, oxytocin antagonist, or saline. Pairs received repeated sessions with administration of the same hormone. In the second, “pair‐maintenance” phase of the experiment, all four members of the squad were placed together in a large cage, and no hormones were administered. For both phases, we measured the physical proximity between pairs as our proxy for social bonding. We found that, compared with saline, administering mesotocin or oxytocin antagonist did not result in different proximities in either the pair‐formation or pair‐maintenance phase of the experiment. Therefore, at the dosages and time frames used here, exogenously introduced mesotocin did not influence same‐sex social bond formation or maintenance. Like oxytocin in mammals, mesotocin regulates avian prosocial behavior; however, unlike oxytocin, we do not have evidence that mesotocin regulates social bonds in birds

    Homogenization of a model for the propagation of sound in the lungs

    Get PDF
    International audienceIn this paper, we are interested in the mathematical modeling of the propagation of sound waves in the lung parenchyma, which is a foam-like elastic material containing millions of air-filled alveoli. In this study, the parenchyma is governed by the linearized elasticity equations, and the air by the acoustic wave equations. The geometric arrangement of the alveoli is assumed to be periodic with a small period Δ > 0. We consider the time-harmonic regime forced by vibrations induced by volumic forces. We use the two-scale convergence theory to study the asymptotic behavior as Δ goes to zero and prove the convergence of the solutions of the coupled fluid-structure problem to the solution of a linear-elasticity boundary value problem
    • 

    corecore