29 research outputs found

    A biomimetic pancreatic cancer on-chip reveals endothelial ablation via ALK7 signaling

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, lethal malignancy that invades adjacent vasculatures and spreads to distant sites before clinical detection. Although invasion into the peripancreatic vasculature is one of the hallmarks of PDAC, paradoxically, PDAC tumors also exhibit hypovascularity. How PDAC tumors become hypovascular is poorly understood. We describe an organotypic PDAC-on-a-chip culture model that emulates vascular invasion and tumor-blood vessel interactions to better understand PDAC-vascular interactions. The model features a 3D matrix containing juxtaposed PDAC and perfusable endothelial lumens. PDAC cells invaded through intervening matrix, into vessel lumen, and ablated the endothelial cells, leaving behind tumor-filled luminal structures. Endothelial ablation was also observed in in vivo PDAC models. We also identified the activin-ALK7 pathway as a mediator of endothelial ablation by PDAC. This tumor-on-a-chip model provides an important in vitro platform for investigating the process of PDAC-driven endothelial ablation and may provide a mechanism for tumor hypovascularity.R01 EB000262 - NIBIB NIH HHS; TL1 TR001410 - NCATS NIH HHS; UC4 DK104196 - NIDDK NIH HHS; UH3 EB017103 - NIBIB NIH HHSPublished versio

    Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury

    Get PDF
    Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvβ5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvβ5 in a rat model of renal IRI. Pretreatment with this anti-αvβ5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvβ5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvβ5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvβ5 antibody treatment. Immunostaining for αvβ5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvβ5 in modulating vascular leak. Additional studies showed αvβ5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvβ5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvβ5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvβ5 inhibition as a promising therapeutic strategy for AKI

    Numerical methods for the design and description of in vitro expansion processes of human mesenchymal stem cells

    Get PDF
    Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called “Digital Twin” of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks. In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown
    corecore