25 research outputs found

    Regional research priorities in brain and nervous system disorders

    Get PDF
    The characteristics of neurological, psychiatric, developmental and substance-use disorders in low-and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low-and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities.Fil: Ravindranath, Vijayalakshmi. Indian Institute of Science; IndiaFil: Dang, Hoang Minh. Vietnam National University; VietnamFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Mansour, Hader. University of Pittsburgh; Estados Unidos. Mansoura University; EgiptoFil: Nimgaonkar, Vishwajit L.. University of Pittsburgh; Estados UnidosFil: Russell, Vivienne Ann. University of Cape Town; SudáfricaFil: Xin, Yu. Peking University; Chin

    A new Internet of Things based optimization scheme of residential demand side management system

    No full text
    The steady increase in the energy demand and the growing carbon footprint has forced electricity-based utilities to shift from their use of non-renewable energy sources to renewable energy sources. Furthermore, there has been an increase in the integration of renewable energy sources in the electric grid. Hence, one needs to manage the energy consumption needs of the consumers, more effectively. Consumers can connect all the devices and houses to the internet by using Internet of Things (IoT) technology. In this study, the researchers have developed and proposed a novel 2-stage hybrid method that schedules the power consumption of the houses possessing a distributed energy generation and storage system. Stage 1 modeled the non-identical Home Energy Management Systems (HEMSs) that can contain the DGS like WT and PV. The HEMS organise the controllable appliances after taking into consideration the user preferences, electricity prices and the amount of energy produced /stored. The set of optimal consumption schedules for every HEMS was estimated using a BPSO and BSA. On the other hand, Stage 2 includes a Multi-Agent-System (MAS) based on the IoT. The system comprises two portions: software and hardware. The hardware comprises the Base Station Unit (BSU) and many Terminal Units (TUs)

    A novel robust smart energy management and demand reduction for smart homes based on internet of energy

    No full text
    In residential energy management (REM), Time of Use (ToU) of devices scheduling based on user-defined preferences is an essential task performed by the home energy management con-troller. This paper devised a robust REM technique capable of monitoring and controlling residential loads within a smart home. In this paper, a new distributed multi-agent framework based on the cloud layer computing architecture is developed for real-time microgrid economic dispatch and monitoring. In this paper the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm-based Time of Use (ToU) pricing model is proposed to define the rates for shoulder-peak and on-peak hours. The results illustrate the effectiveness of the proposed the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm based ToU pricing scheme. A Raspberry Pi3 based model of a well-known test grid topology is modified to support real-time communication with open-source IoE platform Node-Red used for cloud computing. Two levels communication system connects microgrid system, implemented in Raspberry Pi3, to cloud server. The local communication level utilizes IP/TCP and MQTT is used as a protocol for global communication level. The results demonstrate and validate the effectiveness of the proposed technique, as well as the capability to track the changes of load with the interactions in re-al-time and the fast convergence rate

    Practical prototype for energy management system in smart microgrid considering uncertainties and energy theft

    No full text
    Abstract The conventional electrical grid faces significant issues, which this paper aims to address one of most of them using a proposed prototype of a smart microgrid energy management system. In addition to relying too heavily on fossil fuels, electricity theft is another great issue. The proposed energy management system can simultaneously detect electricity theft and implement demand response tactics by employing time-of-use pricing principles and comparing real electricity consumption with grid data. The system uses the Al-Biruni earth radius (BER) optimization algorithm to make smart choices about how to distribute the load, intending to reduce energy consumption and costs without sacrificing comfort. As a bonus, it considers limitations imposed by battery charging/discharging and decentralized power generation. Incorporating sensors and SCADA-based monitoring, the system provides accurate measurement and management of energy usage through load monitoring and control. An intuitive mobile app also helps consumers connect, allowing for more active participation and better control over energy use. Extensive field testing of the prototype shows that by moving loads from peak period to another off-peak period, electricity expenditures can be reduced by up to 48.45%. The energy theft value was calculated to be 1199 W, proving that the system's theft detection model was effective

    Mental health services for children exposed to armed conflict: Médecins Sans Frontières' experience in the Democratic Republic of Congo, Iraq and the occupied Palestinian territory

    No full text
    Armed conflict has broad-ranging impacts on the mental health and wellbeing of children and adolescents. Mental health needs greatly exceed service provision in conflict settings, particularly for these age groups. The provision and targeting of appropriate services requires better understanding of the characteristics and requirements of children and adolescents exposed to armed conflict
    corecore