432 research outputs found

    Calibrating the {\alpha} parameter of convective efficiency using observed stellar properties

    Full text link
    Context. Synthetic model atmosphere calculations are still the most commonly used tool when determining precise stellar parameters and stellar chemical compositions. Besides three-dimensional models that consistently solve for hydrodynamic processes, one-dimensional models that use an approximation for convective energy transport play the major role. Aims. We use modern Balmer-line formation theory as well as spectral energy distribution (SED) measurements for the Sun and Procyon to calibrate the model parameter {\alpha} that describes the efficiency of convection in our 1D models. Convection was calibrated over a significant range in parameter space, reaching from F-K along the main sequence and sampling the turnoff and giant branch over a wide range of metallicities. This calibration was compared to theoretical evaluations and allowed an accurate modeling of stellar atmospheres. Methods. We used Balmer-line fitting and SED fits to determine the convective efficiency parameter {\alpha}. Both methods are sensitive to the structure and temperature stratification of the deeper photosphere. Results. While SED fits do not allow a precise determination of the convective parameter for the Sun and Procyon, they both favor values significantly higher than 1.0. Balmer-line fitting, which we find to be more sensitive, suggests that the convective efficiency parameter {\alpha} is \approx 2.0 for the main sequence and quickly decreases to \approx 1.0 for evolved stars. These results are highly consistent with predictions from 3D models. While the values on the main sequence fit predictions very well, measurements suggest that the decrease of convective efficiency as stars evolve to the giant branch is more dramatic than predicted by models.Comment: 14 pages, 16 figures, accepted for publication in A&

    Star formation in the S233 region

    Full text link
    The main objective of this paper is to study the possibility of triggered star formation on the border of the HII region S233, which is formed by a B-star. Using high-resolution spectra we determine the spectral class of the ionizing star as B0.5 V and the radial velocity of the star to be -17.5(1.4) km/s. This value is consistent with the velocity of gas in a wide field across the S233 region, suggesting that the ionizing star was formed from a parent cloud belonging to the S233 region. By studying spatial-kinematic structure of the molecular cloud in the S233 region, we detected an isolated clump of gas producing CO emission red-shifted relative to the parent cloud. In the UKIDSS and WISE images, the clump of gas coincides with the infrared source containing a compact object and bright-rimmed structure. The bright-rimmed structure is perpendicular to the direction of the ionizing star. The compact source coincides in position with IRAS source 05351+3549. All these features indicate a possibility of triggering formation of a next-generation star in the S233 region. Within the framework of a theoretical one-dimensional model we conclude that the "collect-and-collapse" process is not likely to take place in the S233 region. The presence of the bright-rimmed structure and the compact infrared source suggest that the "collapse of the pre-existing clump" process is taking place.Comment: 12 pages, 10 figure

    F.Y.I., 1991-05-24

    Get PDF
    Newsletter published by Governors State University between 1989-1996

    THz parametric gain in semiconductor superlattices in the absence of electric domains

    Full text link
    We theoretically show that conditions for THz gain and conditions for formation of destructive electric domains in semiconductor superlattices are fairly different in the case of parametric generation and amplification. Action of an unbiased high-frequency electric field on a superlattice causes a periodic variation of energy and effective mass of miniband electrons. This parametric effect can result in a significant gain at some even harmonic of the pump frequency without formation of electric domains and corruption from pump harmonics.Comment: 4 pages, 3 figures. Accepted to Appl. Phys. Let
    corecore