424 research outputs found

    Application of the Ceditest FMDV type O and FMDV-NS enzyme-linked immunosorbent assays for detection of antibodies against Foot-and-mouth disease virus in selected livestock and wildlife species in Uganda

    Get PDF
    Diagnosis and control of Foot-and-mouth disease virus (FMDV) requires rapid and sensitive diagnostic tests. Two antibody enzyme-linked immunosorbent assay (ELISA) kits, Ceditest® FMDV-NS for the detection of antibodies against the nonstructural proteins of all FMDV serotypes and Ceditest® FMDV type O for the detection of antibodies against serotype O, were evaluated under African endemic conditions where the presence of multiple serotypes and the use of nonpurified vaccines complicate serological diagnosis. Serum samples from 218 African buffalo, 758 cattle, 304 goats, and 88 sheep were tested using both kits, and selected samples were tested not only in serotype-specific ELISAs for antibodies against primarily FMDV serotype O, but also against other serotypes. The FMDV-NS assay detected far more positive samples (93%) than the FMDV type O assay (30%) in buffalo (P < 0.05), with predominant antibodies against the South African Territories (SAT) serotypes, while the seroprevalence was generally comparable in cattle with antibodies against serotype O elicited by infection and/or vaccination. However, some districts had higher seroprevalence using the FMDV type O assay indicating vaccination without infection, while 1 cattle herd with antibodies against the SAT serotypes had far more positive samples (85%) using the FMDV-NS versus the FMDV type O (10%), consistent with the latter test\u27s lower sensitivity for antibodies against SAT serotypes. Based on the current investigation, the FMDV type O ELISA may be limited by the presence of SAT serotypes. The FMD NS assay worked well as a screening test for antibodies against all FMDV serotypes present in Uganda; however, as long as nonpurified vaccines are applied in the region, this test cannot be used to differentiate between vaccinated and infected animals

    Retrospective evaluation of foot-and-mouth disease vaccineeffectiveness in Turkey

    Get PDF
    AbstractFoot-and-mouth disease (FMD) is present in much of Turkey and its control is largely based on vaccination. The arrival of the FMD Asia-1 serotype in Turkey in 2011 caused particular concern, spreading rapidly westwards across the country towards the FMD free European Union. With no prior natural immunity, control of spread would rely heavily on vaccination.Unlike human vaccines, field protection is rarely evaluated directly for FMD vaccines. Between September 2011 and July 2012 we performed four retrospective outbreak investigations to assess the vaccine effectiveness (VE) of FMD Asia-1 vaccines in Turkey. Vaccine effectiveness is defined as the reduction in risk in vaccinated compared to unvaccinated individuals with similar virus exposure in the field.The four investigations included 12 villages and 1230 cattle >4 months of age. One investigation assessed the FMD Asia-1 Shamir vaccine, the other three evaluated the recently introduced FMD Asia-1 TUR 11 vaccine made using a field isolate of the FMD Asia-1 Sindh-08 lineage that had recently entered Turkey.After adjustment for confounding, the TUR 11 vaccine provided moderate protection against both clinical disease VE=69% [95% CI: 50%–81%] and infection VE=63% [95% CI: 29%–81%]. However, protection was variable with some herds with high vaccine coverage still experiencing high disease incidence. Some of this variability will be the result of the variation in virus challenge and immunity that occurs under field conditions.In the outbreak investigated there was no evidence that the Asia-1 Shamir vaccine provided adequate protection against clinical FMD with an incidence of 89% in single vaccinated cattle and 69% in those vaccinated two to five times.Based on these effectiveness estimates, vaccination alone is unlikely to produce the high levels of herd immunity needed to control FMD without additional control measures

    OSSOS XXV: Large Populations and Scattering-Sticking in the Distant Transneptunian Resonances

    Full text link
    There have been 77 TNOs discovered to be librating in the distant transneptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7~AU) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, jj:kk resonant objects were grouped by kk in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering-sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering-sticking can explain the entire distant resonant population or not.Comment: Accepted for publication in Planetary Sciences Journal (PSJ

    OSSOS: XIII. Fossilized Resonant Dropouts Tentatively Confirm Neptune's Migration was Grainy and Slow

    Full text link
    The migration of Neptune's resonances through the proto-Kuiper belt has been imprinted in the distribution of small bodies in the outer Solar System. Here we analyze five published Neptune migration models in detail, focusing on the high pericenter distance (high-q) trans-Neptunian Objects (TNOs) near Neptune's 5:2 and 3:1 mean-motion resonances, because they have large resonant populations, are outside the main classical belt, and are relatively isolated from other strong resonances. We compare the observationally biased output from these dynamical models with the detected TNOs from the Outer Solar System Origins Survey, via its Survey Simulator. All of the four new OSSOS detections of high-q non-resonant TNOs are on the Sunward side of the 5:2 and 3:1 resonances. We show that even after accounting for observation biases, this asymmetric distribution cannot be drawn from a uniform distribution of TNOs at 2sigma confidence. As shown by previous work, our analysis here tentatively confirms that the dynamical model that uses grainy slow Neptune migration provides the best match to the real high-q TNO orbital data. However, due to extreme observational biases, we have very few high-q TNO discoveries with which to statistically constrain the models. Thus, this analysis provides a framework for future comparison between the output from detailed, dynamically classified Neptune migration simulations and the TNO discoveries from future well-characterized surveys. We show that a deeper survey (to a limiting r-magnitude of 26.0) with a similar survey area to OSSOS could statistically distinguish between these five Neptune migration models.Comment: Accepted for publication in the Astronomical Journa

    Impact of foot-and-mouth disease on mastitis and culling on a large-scale dairy farm in Kenya

    Get PDF
    Foot and mouth disease (FMD) is a highly transmissible viral infection of cloven hooved animals associated with severe economic losses when introduced into FMD-free countries. Information on the impact of the disease in FMDV-endemic countries is poorly characterised yet essential for the prioritisation of scarce resources for disease control programmes. A FMD (virus serotype SAT2) outbreak on a large-scale dairy farm in Nakuru County, Kenya provided an opportunity to evaluate the impact of FMD on clinical mastitis and culling rate. A cohort approach followed animals over a 12-month period after the commencement of the outbreak. For culling, all animals were included; for mastitis, those over 18 months of age. FMD was recorded in 400/644 cattle over a 29-day period. During the follow-up period 76 animals were culled or died whilst in the over 18 month old cohort 63 developed clinical mastitis. Hazard ratios (HR) were generated using Cox regression accounting for non-proportional hazards by inclusion of time-varying effects. Univariable analysis showed FMD cases were culled sooner but there was no effect on clinical mastitis. After adjusting for possible confounders and inclusion of time-varying effects there was weak evidence to support an effect of FMD on culling (HR = 1.7, 95% confidence intervals [CI] 0.88-3.1, P = 0.12). For mastitis, there was stronger evidence of an increased rate in the first month after the onset of the outbreak (HR = 2.9, 95%CI 0.97-8.9, P = 0.057)

    OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object

    Get PDF
    We report the discovery of the minor planet 2013 SY99_{99}, on an exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au, 2013 SY99_{99}'s orbit has a semi-major axis of 730±40730 \pm 40 au, the largest known for a high-perihelion trans-Neptunian object (TNO), well beyond those of (90377) Sedna and 2012 VP113_{113}. Yet, with an aphelion of 1420±901420 \pm 90 au, 2013 SY99_{99}'s orbit is interior to the region influenced by Galactic tides. Such TNOs are not thought to be produced in the current known planetary architecture of the Solar System, and they have informed the recent debate on the existence of a distant giant planet. Photometry from the Canada-France-Hawaii Telescope, Gemini North and Subaru indicate 2013 SY99_{99} is ∼250\sim 250 km in diameter and moderately red in colour, similar to other dynamically excited TNOs. Our dynamical simulations show that Neptune's weak influence during 2013 SY99_{99}'s perihelia encounters drives diffusion in its semi-major axis of hundreds of astronomical units over 4 Gyr. The overall symmetry of random walks in semi-major axis allow diffusion to populate 2013 SY99_{99}'s orbital parameter space from the 1000-2000 au inner fringe of the Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45 to 49 au and semi-major axes beyond 250 au, providing a formation mechanism that implies an extended population, gently cycling into and returning from the inner fringe of the Oort cloud.Comment: First reviewer report comments incorporated. Comments welcom
    • …
    corecore