360 research outputs found

    On pairwise distances and median score of three genomes under DCJ

    Get PDF
    In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of genome rearrangements required to transform them into a single genome) is often used for measuring their evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a resulting genome is called median genome). In contrast to the rearrangement distance between two genomes which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a quest for simpler and faster approximations for the median score, the most natural of which appears to be the halved sum of pairwise distances which in fact represents a lower bound for the median score. In this work, we study relationship and interplay of pairwise distances between three genomes and their median score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at most 1), even the most "powerful" rearrangements in this respect that increase the lower bound by 1 (by moving one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect the median score. This observation implies that the two measures are not as well-correlated as one's intuition may suggest. We further prove that the median score attains the lower bound exactly on the triples of genomes that can be obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor 2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the difference of the median score and its lower bound is not bounded by a constant.Comment: Proceedings of the 10-th Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB-CG), 2012. (to appear

    A Computational Method for the Rate Estimation of Evolutionary Transpositions

    Full text link
    Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems. We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.Comment: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), 2015. (to appear

    Disturbance of Thermodynamic Equilibrium of the Quartz-Water System and Silica Separation from the Liquid Phase at a Small Temperature Gradient

    Get PDF
    AbstractIn electric furnaces destined for experimental geochemical investigations, a small temperature gradient (TG) always exists, and it is difficult to avoid it. In our electric furnaces (from bottom to top) the temperature rises in the lower part (TG = 0.25°/cm) and falls in the upper part (TG = -0.16°/cm). Long-term runs with quartz and water at 300°C have shown the attainment of equilibrium at TG equal to -0.16°/cm. At TG equal to 0.25°/cm, the silica re- precipitated from the ampoule bottom onto its walls above the meniscus, and the aqueous silica concentration was reduced and became 300 times lower than quartz solubility. The obtained results were explained by the combined action of slow convection of water and thermal diffusion of silica. The efficient mechanism of fractionation revealed by us can be extended to other substances and has geochemical and technological importance

    Limited Lifespan of Fragile Regions in Mammalian Evolution

    Full text link
    An important question in genome evolution is whether there exist fragile regions (rearrangement hotspots) where chromosomal rearrangements are happening over and over again. Although nearly all recent studies supported the existence of fragile regions in mammalian genomes, the most comprehensive phylogenomic study of mammals (Ma et al. (2006) Genome Research 16, 1557-1565) raised some doubts about their existence. We demonstrate that fragile regions are subject to a "birth and death" process, implying that fragility has limited evolutionary lifespan. This finding implies that fragile regions migrate to different locations in different mammals, explaining why there exist only a few chromosomal breakpoints shared between different lineages. The birth and death of fragile regions phenomenon reinforces the hypothesis that rearrangements are promoted by matching segmental duplications and suggests putative locations of the currently active fragile regions in the human genome

    Metrological characterization of the pulsed Rb clock with optical detection

    Full text link
    We report on the implementation and the metrological characterization of a vapor-cell Rb frequency standard working in pulsed regime. The three main parts that compose the clock, physics package, optics and electronics, are described in detail in the paper. The prototype is designed and optimized to detect the clock transition in the optical domain. Specifically, the reference atomic transition, excited with a Ramsey scheme, is detected by observing the interference pattern on a laser absorption signal. \ The metrological analysis includes the observation and characterization of the clock signal and the measurement of frequency stability and drift. In terms of Allan deviation, the measured frequency stability results as low as 1.7×1013 τ1/21.7\times 10^{-13} \ \tau^{-1/2}, τ\tau being the averaging time, and reaches the value of few units of 101510^{-15} for τ=104\tau=10^{4} s, an unprecedent achievement for a vapor cell clock. We discuss in the paper the physical effects leading to this result with particular care to laser and microwave noises transferred to the clock signal. The frequency drift, probably related to the temperature, stays below 101410^{-14} per day, and no evidence of flicker floor is observed. \ We also mention some possible improvements that in principle would lead to a clock stability below the 101310^{-13} level at 1 s and to a drift of few units of 101510^{-15} per day

    Proton acceleration in analytic reconnecting current sheets

    Get PDF
    Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~ξ-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the “effective” resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona

    The quantum computer potential

    Get PDF
    The efficient system architecture of quantum computers has led to improvements in various areas. This paper describes the concepts of quantum computing and quantum computing applications. The current status of the developments in quantum computing is presented
    corecore