24 research outputs found
Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility
© 2015, Springer Basel. Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – for restricted cases, to show the problems arising in the course of study
Effectiveness of the neutralizing antibody sotrovimab among high-risk patients with mild-to-moderate SARS-CoV-2 in Qatar
ObjectivesTo estimate the real-world effectiveness of sotrovimab against severe, critical, or fatal COVID-19 in Qatar at a time in which most SARS-CoV-2 incidences occurred due to the BA.2 Omicron subvariant. MethodsWe conducted a matched case-control study among all individuals eligible for sotrovimab treatment per United States Food and Drug Administration guidelines in the resident population of Qatar. The odds of progression to severe forms of COVID-19 were compared in cases (treatment group) versus controls (eligible patients who opted not to receive the treatment). Subgroup analyses were conducted. ResultsA total of 3364 individuals were eligible for sotrovimab treatment during the study period, of whom 519 individuals received the treatment, whereas the remaining 2845 constituted the controls. The adjusted odds ratio of disease progression to severe, critical, or fatal COVID-19 comparing the treatment group to the control group was 2.67 (95% confidence interval 0.60-11.91). In the analysis including only the subgroup of patients at higher risk of severe forms of COVID-19, the adjusted odds ratio was 0.65 (95% confidence interval 0.17-2.48). ConclusionThere was no evidence for a protective effect of sotrovimab in reducing COVID-19 severity in a setting dominated by the BA.2 subvariant
Bivalent mRNA-1273.214 vaccine effectiveness against SARS-CoV-2 omicron XBB* infections
In October of 2022, Qatar introduced COVID-19 bivalent vaccination for persons ≥ 12 years using the 50-μg mRNA-1273.214 vaccine combining SARS-CoV-2 ancestral and omicron BA.1 strains.1 We estimated this vaccine’s effectiveness against SARS-CoV-2 infection.
Using Qatar’s national SARS-CoV-2 databases, we conducted a matched, retrospective, cohort study to compare infection incidence in the national cohort of persons who received the vaccine (bivalent cohort) to that in the national cohort of Qatar residents whose last vaccination was ≥6 months before follow-up start (no-recent-vaccination cohort; Supplementary Appendix 1). The 6-month cut-off was chosen because of negligible effectiveness of first-generation vaccines against omicron infection ≥ 6 months after vaccination.2
Incidence of infection was defined as the first SARS-CoV-2 PCR-positive or rapid-antigen-positive test after the start of follow-up, regardless of symptoms. Cohorts were balanced on observed confounders through exact matching. Follow-up started 7 days after the person in the bivalent cohort received their vaccine dose. Associations were estimated using Cox proportional-hazards models adjusted for the matching factors and testing rate
