938 research outputs found

    Self-dual Ginzburg-Landau vortices in a disk

    Get PDF
    We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find that the minimal energy configurations are not given by the Bogomol'nyi equations but by solutions to the Euler Lagrange ones. With a simple approximation scheme we reproduce the result of the numerical calculation.Comment: 8 pages, 4 figures, RevTex macro

    Weak Localization and Antilocalization in Topological Insulator Thin Films with Coherent Bulk-Surface Coupling

    Full text link
    We evaluate quantum corrections to conductivity in an electrically gated thin film of a three-dimensional (3D) topological insulator (TI). We derive approximate analytical expressions for the low-field magnetoresistance as a function of bulk doping and bulk-surface tunneling rate. Our results reveal parameter regimes for both weak localization and weak antilocalization, and include diffusive Weyl semimetals as a special case.Comment: After publication, we have noticed and corrected two small but potentially misleading typographic errors in Eqs. (2.27) and (2.29), where the definitions of \tau_s and \tau_v were mistakenly switched. Once these typographic errors are fixed, all the results remain unchanged. An Erratum will be published in PR

    Vortex nucleation through edge states in finite Bose-Einstein condensates

    Full text link
    We study the vortex nucleation in a finite Bose-Einstein condensate. Using a set of non-local and chiral boundary conditions to solve the Schro¨\ddot{o}dinger equation of non-interacting bosons in a rotating trap, we obtain a quantitative expression for the characteristic angular velocity for vortex nucleation in a condensate which is found to be 35% of the transverse harmonic trapping frequency.Comment: 24 pages, 8 figures. Both figures and the text have been revise

    Mesoscopic fluctuations in the spin-electric susceptibility due to Rashba spin-orbit interaction

    Full text link
    We investigate mesoscopic fluctuations in the spin polarization generated by a static electric field and by Rashba spin-orbit interaction in a disordered 2D electron gas. In a diagrammatic approach we find that the out-of-plane polarization -- while being zero for self-averaging systems -- exhibits large sample-to-sample fluctuations which are shown to be well within experimental reach. We evaluate the disorder-averaged variance of the susceptibility and find its dependence on magnetic field, spin-orbit interaction, dephasing, and chemical potential difference.Comment: 4 pages, 4 figure

    Coherent Umklapp Scattering of Light from Disordered Photonic Crystals

    Full text link
    A theoretical study of the coherent light scattering from disordered photonic crystal is presented. In addition to the conventional enhancement of the reflected light intensity into the backscattering direction, the so called coherent backscattering (CBS), the periodic modulation of the dielectric function in photonic crystals gives rise to a qualitatively new effect: enhancement of the reflected light intensity in directions different from the backscattering direction. These additional coherent scattering processes, dubbed here {\em umklapp scattering} (CUS), result in peaks, which are most pronounced when the incident light beam enters the sample at an angle close to the the Bragg angle. Assuming that the dielectric function modulation is weak, we study the shape of the CUS peaks for different relative lengths of the modulation-induced Bragg attenuation compared to disorder-induced mean free path. We show that when the Bragg length increases, then the CBS peak assumes its conventional shape, whereas the CUS peak rapidly diminishes in amplitude. We also study the suppression of the CUS peak upon the departure of the incident beam from Bragg resonance: we found that the diminishing of the CUS intensity is accompanied by substantial broadening. In addition, the peak becomes asymmetric.Comment: LaTeX, 8 two-column pages, 6 figures include

    Anderson localization of a Bose-Einstein condensate in a 3D random potential

    Full text link
    We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory of localization to show that the long-time behavior of the condensate density is controlled by a single parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that the two critical exponents of the localization transition determine the evolution of the condensate density in time and space.Comment: 4 pages, 2 figure

    Transverse confinement of waves in 3D random media

    Full text link
    We study the transmission of a tightly focused beam through a thick slab of 3D disordered medium in the Anderson localized regime. We show that the transverse profile of the transmitted beam exhibits clear signatures of Anderson localization and that its mean square width provides a direct measure of the localization length. For a short incident pulse, the width is independent of absorption.Comment: 4 pages, 3 figure

    Quantum oscillations in mesoscopic rings and anomalous diffusion

    Full text link
    We consider the weak localization correction to the conductance of a ring connected to a network. We analyze the harmonics content of the Al'tshuler-Aronov-Spivak (AAS) oscillations and we show that the presence of wires connected to the ring is responsible for a behaviour different from the one predicted by AAS. The physical origin of this behaviour is the anomalous diffusion of Brownian trajectories around the ring, due to the diffusion in the wires. We show that this problem is related to the anomalous diffusion along the skeleton of a comb. We study in detail the winding properties of Brownian curves around a ring connected to an arbitrary network. Our analysis is based on the spectral determinant and on the introduction of an effective perimeter probing the different time scales. A general expression of this length is derived for arbitrary networks. More specifically we consider the case of a ring connected to wires, to a square network, and to a Bethe lattice.Comment: 17 pages, 7 eps figure

    Mesoscopic scattering of spin s particles

    Full text link
    Quantum effects in weakly disordered systems are governed by the properties of the elementary interaction between propagating particles and impurities. Long range mesoscopic effects due to multiple scattering are derived by iterating the single scattering vertex, which has to be appropriately diagonalized. In the present contribution, we present a systematic and detailed diagonalisation of the diffuson and cooperon vertices responsible for weak localisation effects. We obtain general expressions for eigenvalues and projectors onto eigenmodes, for any spin and arbitrary elementary interaction with impurities. This description provides a common frame for a unified theory of mesoscopic spin physics for electrons, photons, and other quantum particles. We treat in detail the case of spin-flip scattering of electrons by freely orientable magnetic impurities and briefly review the case of photon scattering from degenerate dipole transitions in cold atomic gases.Comment: published version, with a new figure and new section
    • …
    corecore