306 research outputs found

    The opportunities of two-phase hybrid stepping motor back EMF sampling

    Get PDF
    By counting the step command pulses, stepping motors can be straightforwardly used for open loop positioning. However, open-loop control is often insufficient to guarantee accurate and energy efficient movements. More intelligent stepping motor algorithms can meet these concerns, however, this requires position information. The back EMF signal contains useful information on the rotor position. This information can be used to monitor the motor condition and to implement a more advanced position control algorithm. A theoretical analysis gives insight into the back EMF generated in a two-phase hybrid stepping motor. In this paper a, by the authors, patented sampling method is considered to measure the back EMF signal. The opportunities of this method are considered theoretically. Moreover this paper presents extensive measurement results proving the opportunities of the method, to develop more intelligent stepping motor algorithms

    Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: study protocol for an international multicenter randomized controlled trial (PROMISE study)

    Get PDF
    Background: Although results of case series support the use of spinal cord stimulation in failed back surgery syndrome patients with predominant low back pain, no confirmatory randomized controlled trial has been undertaken in this patient group to date. PROMISE is a multicenter, prospective, randomized, open-label, parallel-group study designed to compare the clinical effectiveness of spinal cord stimulation plus optimal medical management with optimal medical management alone in patients with failed back surgery syndrome and predominant low back pain. Method/Design: Patients will be recruited in approximately 30 centers across Canada, Europe, and the United States. Eligible patients with low back pain exceeding leg pain and an average Numeric Pain Rating Scale score >= 5 for low back pain will be randomized 1:1 to spinal cord stimulation plus optimal medical management or to optimal medical management alone. The investigators will tailor individual optimal medical management treatment plans to their patients. Excluded from study treatments are intrathecal drug delivery, peripheral nerve stimulation, back surgery related to the original back pain complaint, and experimental therapies. Patients randomized to the spinal cord stimulation group will undergo trial stimulation, and if they achieve adequate low back pain relief a neurostimulation system using the Specify (R) 5-6-5 multi-column lead (Medtronic Inc., Minneapolis, MN, USA) will be implanted to capture low back pain preferentially in these patients. Outcome assessment will occur at baseline (pre-randomization) and at 1, 3, 6, 9, 12, 18, and 24 months post randomization. After the 6-month visit, patients can change treatment to that received by the other randomized group. The primary outcome is the proportion of patients with >= 50% reduction in low back pain at the 6-month visit. Additional outcomes include changes in low back and leg pain, functional disability, health-related quality of life, return to work, healthcare utilization including medication usage, and patient satisfaction. Data on adverse events will be collected. The primary analysis will follow the intention-to-treat principle. Healthcare use data will be used to assess costs and long-term cost-effectiveness. Discussion: Recruitment began in January 2013 and will continue until 2016

    Modular Air-Coupled Ultrasonic Multichannel System for Inline NDT

    Get PDF
    AbstractIn many production processes it is important to detect in a very early stage basic errors in the fabricatedmaterial. If the errors are not visible from the exterior, ultrasonic inspection is a convenient technique,at least if the nature of the error influences the characteristics of sound passing through the material.Examples are local density variations in non-wovens, delaminations in composites, bad bondings inlaminates, inclusions, cracks or other artefacts in plastic or metal plates, etc. There are two major,difficult requirements imposed by industry to the used detection technique: the sensors shouldn’t makephysical contact with the material and the speed of testing must be sufficiently high to enable testingin-line. The former requirement can be met by employing an air-coupled ultrasonic approach, the latterby using a multichannel system.We propose a modular air-coupled ultrasonic multichannel system.Each multichannel module contains12 air-coupled transducers and exists in a transmitter and a receiver version. The desired scan width isobtained by connecting several modules to each other. During the scanning all transducers are spatially fixed while the material is moving forward. This way, speeds up to 1m/s are possible, irrespective ofthe width of the material. To that purpose a FPGA based platform with parallel processing of largenumbers of data streams is implemented in the modules. This allows the implementation of all kind ofprocedures, going from point measurements to more sophisticated techniques.In spite of all measurements being performed in ambient air, the ultrasonic frequency is rather high(1MHz), but lower frequencies are possible as well. The most obvious set-up of the modules is a through-transmission configuration. However the system can also be used in a pitch-catch configuration which isvery suitable for one-sided testing of thick materials. An examples established in the laboratory is shownto illustrate the performance

    Toward an efficient inverse characterization of the viscoelastic properties of anisotropic media based on the ultrasonic polar scan

    Get PDF
    Composite materials (e.g., carbon fiber reinforced plastics (CFRP)) are increasingly used for critical components in several industrial sectors (e.g. aerospace, automotive). Their anisotropic nature makes it difficult to accurately determine material properties or to assess internal damages. To resolve these challenges, the Ultrasonic Polar Scan (UPS) technique has been introduced. In a UPS experiment, a fixed material spot is insonified at a multitude of incidence angles Psi(theta,phi) for which the transmission amplitude as well as the associated arrival time (time-of-flight) are measured. Mapping these quantities on a polar diagram represents a fingerprint of the local viscoelasticity of the investigated material. In the present study, we propose a novel two-stage inversion scheme that is able to infer both the elastic and the viscous properties. In the first step, we solve the inverse problem of determining the elastic constants from time-of-flight UPS recordings. The second stage handles a similar inverse problem, but now operates on the amplitude landscape of a UPS experiment for determining the viscous part of the viscoelastic tensor. This two-stage procedure thus yields the viscoelastic tensor of the insonified material spot. The developed characterization scheme has been employed on both virtual (numerical) UPS recordings, to test the effectiveness of the method, and experimental UPS recordings of unidirectional C/E plates

    Damage signature of fatigued fabric reinforced plastics in the pulsed ultrasonic polar scan

    Get PDF
    This study investigates the use of both the amplitude and time-of-flight based pulsed ultrasonic polar scan (P-UPS) for the nondestructive detection and evaluation of fatigue damage in fiber reinforced composites. Several thermoplastic carbon fabric reinforced PPS specimens (CETEX), loaded under various fatigue conditions, have been scanned at multiple material spots according to the P-UPS technique in order to extract material degradation in a quantitative way. The P-UPS results indicate that shear dominated fatigued carbon/PPS goes with a reduction of shear properties combined with large fiber distortions. The P-UPS results of the tension-tension fatigued carbon/PPS samples on the other hand reveal a directional degradation of the stiffness properties, reaching a maximum reduction of -12.8% along the loading direction. The P-UPS extracted damage characteristics are fully supported by simulations, conventional destructive tests as well as visual inspection. The results demonstrate the excellent capability of the P-UPS method for nondestructively assessing and quantifying both shear-dominated and tension-tension fatigue damage in fabric reinforced plastics

    Generator coordinate method calculations of one-nucleon removal reactions on 40^{40}Ca

    Get PDF
    An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in 40^{40}Ca. The relationship between the bound-state overlap functions and the one-body density matrix has been used. These overlap functions are applied to calculate the cross sections of one-nucleon removal reactions such as (e,e′pe,e'p), (γ,p\gamma,p) and (p,dp,d) on 40^{40}Ca on the same theoretical footing. A consistent description of data for the different reactions is achieved. The shapes of the experimental cross sections for transitions to the 3/2+3/2^{+} ground state and the first 1/2+1/2^{+} excited state of the residual nuclei are well reproduced by the overlap functions obtained within the GCM. An additional spectroscopic factor accounting for correlations not included in the overlap function must be applied to the calculated results to reproduce the size of the experimental cross sections.Comment: 16 pages, 6 figures, to be published in Phys. Rev.

    The Impact of Augmented Information on Visuo-Motor Adaptation in Younger and Older Adults

    Get PDF
    BACKGROUND: Adjustment to a visuo-motor rotation is known to be affected by ageing. According to previous studies, the age-related differences primarily pertain to the use of strategic corrections and the generation of explicit knowledge on which strategic corrections are based, whereas the acquisition of an (implicit) internal model of the novel visuo-motor transformation is unaffected. The present study aimed to assess the impact of augmented information on the age-related variation of visuo-motor adjustments. METHODOLOGY/PRINCIPAL FINDINGS: Participants performed aiming movements controlling a cursor on a computer screen. Visual feedback of direction of cursor motion was rotated 75 degrees relative to the direction of hand motion. Participants had to adjust to this rotation in the presence and absence of an additional hand-movement target that explicitly depicted the input-output relations of the visuo-motor transformation. An extensive set of tests was employed in order to disentangle the contributions of different processes to visuo-motor adjustment. Results show that the augmented information failed to affect the age-related variations of explicit knowledge, adaptive shifts, and aftereffects in a substantial way, whereas it clearly affected initial direction errors during practice and proprioceptive realignment. CONCLUSIONS: Contrary to expectations, older participants apparently made no use of the augmented information, whereas younger participants used the additional movement target to reduce initial direction errors early during practice. However, after a first block of trials errors increased, indicating a neglect of the augmented information, and only slowly declined thereafter. A hypothetical dual-task account of these findings is discussed. The use of the augmented information also led to a selective impairment of proprioceptive realignment in the younger group. The mere finding of proprioceptive realignment in adaptation to a visuo-motor rotation in a computer-controlled setup is noteworthy since visual and proprioceptive information pertain to different objects
    • …
    corecore