708 research outputs found
Raising Bi-O bands above the Fermi energy level of hole-doped BiSrCaCuO and other cuprate superconductors
The Fermi surface (FS) of BiSrCaCuO
(Bi2212) predicted by band theory displays Bi-related pockets around the
point, which have never been observed experimentally. We show that
when the effects of hole doping either by substituting Pb for Bi or by adding
excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi
energy () and the resulting first-principles FS is in remarkable accord
with measurements. With decreasing hole-doping the Bi-O bands drop below
and the system self-dopes below a critical hole concentration. Computations on
other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the
cation-derived band with hole doping is a general property of the electronic
structures of the cuprates.Comment: 4 pages, 4 figures; PRL (2006, in press
Improved Current Densities in MgB2 By Liquid-Assisted Sintering
Polycrystalline MgB2 samples with GaN additions were prepared by reaction of
Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic
phase which allowed liquid phase sintering and produces plate-like grains. For
low-level GaN additions (5% at. % or less), the critical transition
temperature, Tc, remained unchanged and in 1T magnetic field, the critical
current density, Jc was enhanced by a factor of 2 and 10, for temperatures of
\~5K and 20K, respectively. The values obtained are approaching those of hot
isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter
Thin-Film Trilayer Manganate Junctions
Spin-dependent conductance across a manganate-barrier-manganate junction has
recently been demonstrated. The junction is a LaSrMnO%
-SrTiO-La SrMnO trilayer device supporting
current-perpendicular transport. Large magnetoresistance of up to a factor of
five change was observed in these junctions at 4.2K in a relatively low field
of the order of 100 Oe. Temperature and bias dependent studies revealed a
complex junction interface structure whose materials physics has yet to be
understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A
vol.356 (1998
Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers
Large area arrays of through-thickness nanoscale pores have been milled into
superconducting Nb thin films via a process utilizing anodized aluminum oxide
thin film templates. These pores act as artificial flux pinning centers,
increasing the superconducting critical current, Jc, of the Nb films. By
optimizing the process conditions including anodization time, pore size and
milling time, Jc values approaching and in some cases matching the
Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 K have been achieved - a
Jc enhancement over as-deposited films of more than 50 times. In the field
dependence of Jc, a matching field corresponding to the areal pore density has
also been clearly observed. The effect of back-filling the pores with magnetic
material has then been investigated. While back-filling with Co has been
successfully achieved, the effect of the magnetic material on Jc has been found
to be largely detrimental compared to voids, although a distinct influence of
the magnetic material in producing a hysteretic Jc versus applied field
behavior has been observed. This behavior has been tested for compatibility
with currently proposed models of magnetic pinning and found to be most closely
explained by a model describing the magnetic attraction between the flux
vortices and the magnetic inclusions.Comment: 9 pages, 10 figure
Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films
We present a comparative study of the angular dependent critical current
density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and
SrTiO3 substrates. We identify three angular regimes where pinning is dominated
by different types of correlated and uncorrelated defects. We show that those
regimes are present in all cases, indicating that the pinning mechanisms are
the same, but their extension and characteristics are sample dependent,
reflecting the quantitative differences in texture and defect density. In
particular, the more defective nature of the films on IBAD turns into an
advantage as it results in stronger vortex pinning, demonstrating that the
critical current density of the films on single crystals is not an upper limit
for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP
Induced magnetization in LaSrMnO/BiFeO superlattices
Using polarized neutron reflectometry (PNR), we observe an induced
magnetization of 75 25 kA/m at 10 K in a LaSrMnO
(LSMO)/BiFeO superlattice extending from the interface through several
atomic layers of the BiFeO (BFO). The induced magnetization in BFO is
explained by density functional theory, where the size of bandgap of BFO plays
an important role. Considering a classical exchange field between the LSMO and
BFO layers, we further show that magnetization is expected to extend throughout
the BFO, which provides a theoretical explanation for the results of the
neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in
Physical Review Letter
Strongly Enhanced Current Densities in Superconducting Coated Conductors of YBa2Cu3O7-x + BaZrO3
There are numerous potential applications for superconducting tapes, based on
YBa2Cu3O7-x (YBCO) films coated onto metallic substrates. A long established
goal of more than 15 years has been to understand the magnetic flux pinning
mechanisms which allow films to maintain high current densities out to high
magnetic fields. In fact, films carry 1-2 orders of magnitude higher current
densities than any other form of the material. For this reason, the idea of
further improving pinning has received little attention. Now that
commercialisation of conductors is much closer, for both better performance and
lower fabrication costs, an important goal is to achieve enhanced pinning in a
practical way. In this work, we demonstrate a simple and industrially scaleable
route which yields a 1.5 to 5-fold improvement in the in-field current
densities of already-high-quality conductors
The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial: a randomised double-blind placebo-controlled parallel-group multicentre trial and economic evaluation of cannabinoids to slow progression in multiple sclerosis.
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial aimed to determine whether or not oral Δ(9)-tetrahydrocannabinol (Δ(9)-THC) slowed the course of progressive multiple sclerosis (MS); evaluate safety of cannabinoid administration; and, improve methods for testing treatments in progressive MS.The National Institute for Health Research Health Technology Assessment programmeMedical Research Council Efficacy and Mechanism Evaluation programmeMultiple Sclerosis SocietyMultiple Sclerosis Trus
Enhancement of Critical Current Density in low level Al-doped MgB2
Two sets of MgB2 samples doped with up to 5 at. % of Al were prepared in
different laboratories using different procedures. Decreases in the a and c
lattice parameters were observed with Al doping confirming Al substitution onto
the Mg site. The critical temperature (Tc) remained largely unchanged with Al
doping. For 1 - 2.5 at.% doping, at 20K the in-field critical current densities
(Jc's) were enhanced, particularly at lower fields. At 5K, in-field Jc was
markedly improved, e.g. at 5T Jc was enhanced by a factor of 20 for a doping
level of 1 at.% Al. The improved Jcs correlate with increased sample
resistivity indicative of an increase in the upper critical field, Hc2, through
alloying.Comment: 17 pages, 4 figures, to be published in Superconductor Science and
Technolog
Recommended from our members
From warfare to welfare: veterans, military charities and the blurred spatiality of post-service welfare in the United Kingdom
The military offers a form of welfare-for-work but when personnel leave they lose this safety net, a loss exacerbated by the rollback neoliberalism of the contemporary welfare state. Increasingly the third sector has stepped in to address veterans’ welfare needs through operating within and across military/civilian and state/market/community spaces and cultures. In this paper we use both veterans’ and military charities’ experiences to analyse the complex politics that govern the liminal boundary zone of post-military welfare. Through exploring ‘crossing’ and ‘bridging’ we conceptualise military charities as ‘boundary subjects’, active yet dependent on the continuation of the civilian-military binary, and argue that the latter is better understood as a multidirectional, multiscalar and contextual continuum. Post-military welfare emerges as a competitive, confused and confusing assemblage that needs to be made more navigable in order to better support the ‘heroic poor’
- …
