research

Raising Bi-O bands above the Fermi energy level of hole-doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} and other cuprate superconductors

Abstract

The Fermi surface (FS) of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212) predicted by band theory displays Bi-related pockets around the (π,0)(\pi,0) point, which have never been observed experimentally. We show that when the effects of hole doping either by substituting Pb for Bi or by adding excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi energy (EFE_F) and the resulting first-principles FS is in remarkable accord with measurements. With decreasing hole-doping the Bi-O bands drop below EFE_F and the system self-dopes below a critical hole concentration. Computations on other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the cation-derived band with hole doping is a general property of the electronic structures of the cuprates.Comment: 4 pages, 4 figures; PRL (2006, in press

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020