4,875 research outputs found

    Microscopic Enhancement of Heavy-Element Production

    Get PDF
    Realistic fusion barriers are calculated in a macroscopic-microscopic model for several soft-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a realistic picture are very different from those obtained in a purely macroscopic model. For reactions on 208:Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for soft-fusion reactions leading to compound systems near Z = 110. These results show that no significant ``extra-extra-push'' energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not included here. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of the figures, available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/mehe

    Density waves and supersolidity in rapidly rotating atomic Fermi gases

    Get PDF
    We study theoretically the low-temperature phases of a two-component atomic Fermi gas with attractive s-wave interactions under conditions of rapid rotation. We find that, in the extreme quantum limit, when all particles occupy the lowest Landau level, the normal state is unstable to the formation of "charge" density wave (CDW) order. At lower rotation rates, when many Landau levels are occupied, we show that the low-temperature phases can be supersolids, involving both CDW and superconducting order.Comment: 4 pages, 1 figure, uses feynmp.st

    The stability and the shape of the heaviest nuclei

    Full text link
    In this paper, we report a systematic study of the heaviest nuclei within the relativistic mean field (RMF) model. By comparing our results with those of the Hartree-Fock-Bogoliubov method (HFB) and the finite range droplet model (FRDM), the stability and the shape of the heaviest nuclei are discussed. The theoretical predictions as well as the existing experimental data indicate that the experimentally synthesized superheavy nuclei are in between the fission stability line, the line connecting the nucleus with maximum binding energy per nucleon in each isotopic chain, and the β\beta-stability line, the line connecting the nucleus with maximum binding energy per nucleon in each isobaric chain. It is shown that both the fission stability line and the β\beta-stability line tend to be more proton rich in the superheavy region. Meanwhile, all the three theoretical models predict most synthesized superheavy nuclei to be deformed.Comment: 6 pages, 7 figures, to appear in Journal of Physics

    Proton-neutron quadrupole interactions: an effective contribution to the pairing field

    Get PDF
    We point out that the proton-neutron energy contribution, for low multipoles (in particular for the quadrupole component), effectively renormalizes the strength of the pairing interaction acting amongst identical nucleons filling up a single-j or a set of degenerate many-j shells. We carry out the calculation in lowest-order perturbation theory. We perform a study of this correction in various mass regions. These results may have implications for the use of pairing theory in medium-heavy nuclei and for the study of pairing energy corrections to the liquid drop model when studying nuclear masses.Comment: 19 pages, TeX, 3 tables, 2 figures. Accepted in PR
    corecore