14,025 research outputs found
Shear-transformation-zone theory of plastic deformation near the glass transition
The shear-transformation-zone (STZ) theory of plastic deformation in
glass-forming materials is reformulated in light of recent progress in
understanding the roles played the effective disorder temperature and entropy
flow in nonequilibrium situations. A distinction between fast and slow internal
state variables reduces the theory to just two coupled equations of motion, one
describing the plastic response to applied stresses, and the other the dynamics
of the effective temperature. The analysis leading to these equations contains,
as a byproduct, a fundamental reinterpretation of the dynamic yield stress in
amorphous materials. In order to put all these concepts together in a realistic
context, the paper concludes with a reexamination of the experimentally
observed rheological behavior of a bulk metallic glass. That reexamination
serves as a test of the STZ dynamics, confirming that system parameters
obtained from steady-state properties such as the viscosity can be used to
predict transient behaviors.Comment: 15 pages, four figure
Local Geometric Invariants of Integrable Evolution Equations
The integrable hierarchy of commuting vector fields for the localized
induction equation of 3D hydrodynamics, and its associated recursion operator,
are used to generate families of integrable evolution equations which preserve
local geometric invariants of the evolving curve or swept-out surface.Comment: 15 pages, AMSTeX file (to appear in Journal of Mathematical Physics
Excitation Chains at the Glass Transition
The excitation-chain theory of the glass transition, proposed in an earlier
publication, predicts diverging, super-Arrhenius relaxation times and, {\it
via} a similarly diverging length scale, suggests a way of understanding the
relations between dynamic and thermodynamic properties of glass-forming
liquids. I argue here that critically large excitation chains play a role
roughly analogous to that played by critical clusters in the droplet model of
vapor condensation. The chains necessarily induce spatial heterogeneities in
the equilibrium states of glassy systems; and these heterogeneities may be
related to stretched-exponential relaxation. Unlike a first-order condensation
point in a vapor, the glass transition is not a conventional phase
transformation, and may not be a thermodynamic transition at all.Comment: 4 pages, no figure
A microscopic model for solidification
We present a novel picture of a non isothermal solidification process
starting from a molecular level, where the microscopic origin of the basic
mechanisms and of the instabilities characterizing the approach to equilibrium
is rendered more apparent than in existing approaches based on coarse grained
free energy functionals \`a la Landau.
The system is composed by a lattice of Potts spins, which change their state
according to the stochastic dynamics proposed some time ago by Creutz. Such a
method is extended to include the presence of latent heat and thermal
conduction.
Not only the model agrees with previous continuum treatments, but it allows
to introduce in a consistent fashion the microscopic stochastic fluctuations.
These play an important role in nucleating the growing solid phase in the melt.
The approach is also very satisfactory from the quantitative point of view
since the relevant growth regimes are fully characterized in terms of scaling
exponents.Comment: 7 pages Latex +3 figures.p
Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Formulation in Terms of an Effective Disorder Temperature
This investigation extends earlier studies of a shear-transformation-zone
(STZ) theory of plastic deformation in amorphous solids. My main purpose here
is to explore the possibility that the configurational degrees of freedom of
such systems fall out of thermodynamic equilibrium with the heat bath during
persistent mechanical deformation, and that the resulting state of
configurational disorder may be characterized by an effective temperature. The
further assumption that the population of STZ's equilibrates with the effective
temperature allows the theory to be compared directly with experimentally
measured properties of metallic glasses, including their calorimetric behavior.
The coupling between the effective temperature and mechanical deformation
suggests an explanation of shear-banding instabilities.Comment: 29 pages, 11 figure
A repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism
Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the
most well-characterized phases of correlated Fermi systems. A recent experiment
has reported the first evidence for novel phase behavior on the repulsive side
of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting
recent theoretical studies to the atomic trap geometry, we show that an
adiabatic ferromagnetic transition would take place at a weaker interaction
strength than is observed in experiment. This discrepancy motivates a simple
non-equilibrium theory that takes account of the dynamics of magnetic defects
and three-body losses. The formalism developed displays good quantitative
agreement with experiment.Comment: 4 pages, 2 figure
Localized induction equation and pseudospherical surfaces
We describe a close connection between the localized induction equation
hierarchy of integrable evolution equations on space curves, and surfaces of
constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A:
Mathematical and Genera
- …