409,424 research outputs found
Measuring the interaction force between a high temperature superconductor and a permanent magnet
Repulsive and attractive forces are both possible between a superconducting
sample and a permanent magnet, and they can give place to magnetic levitation
or free-suspension phenomena, respectively. We show experiments to quantify
this magnetic interaction which represents a promising field regarding to
short-term technological applications of high temperature superconductors. The
measuring technique employs an electronic balance and a rare-earth magnet that
induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed
in liquid nitrogen. The simple design of the experiments allows a fast and easy
implementation in the advanced physics laboratory with a minimum cost. Actual
levitation and suspension demonstrations can be done simultaneously as a help
to interpret magnetic force measurements.Comment: 12 pages and 3 figures in postscrip
Synergetic modelling of the Russian Federation’s energy system parameters
The energy system in any country is the basis of the whole economy. The level of its development largely determines the quantity and quality of economic entities, periods of economic growth, fall and stagnation. A high percentage of the power-deficient municipalities in the Russian Federation shows the substantive issues in this sphere that carries a threat to the energy security of the state. One of the promising trends for enhancing the energy security is the renewable energy sources (RES). Their use has the obvious benefits: it provides electricity to power-deficient and inaccessible areas, contributes to the introduction and spread of new technologies, thus solving the important social and economic problem. At that, it is important to determine the optimum ratio using of the recovery of renewable and conventional energy sources (CES). One of the main challenges in this regard is to build a model that adequately reflects the ratio of renewable and conventional energy sources in the Russian energy system. The paper presents the results of a synergistic approach to the construction of such a model. The Lotka- Volterra model was the main instrument used, which allowed to study a behavior pattern of the considered systems on the basis of the simplified regularities. It was found that the best possible qualitative “jump” in the Russian energy sector was in 2008. The calculations allowed to investigate the behavior of the Russian energy system with the variation of the initial conditions and to assess the validity of the targets for the share of electricity produced through the use of renewable energy in the total electric power of the country
Matter formed at the BNL relativistic heavy ion collider
We suggest that the "new form of matter" found just above by RHIC is
made up of tightly bound quark-antiquark pairs, essentially 32 chirally
restored (more precisely, nearly massless) mesons of the quantum numbers of
, , and . Taking the results of lattice gauge
simulations (LGS) for the color Coulomb potential from the work of the
Bielefeld group and feeding this into a relativistic two-body code, after
modifying the heavy-quark lattice results so as to include the
velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go
to zero at just as they do from below as predicted by the vector
manifestation (VM in short) of hidden local symmetry. This could explain the
rapid rise in entropy up to found in LGS calculations. We argue that how
the dynamics work can be understood from the behavior of the hard and soft
glue.Comment: Final versio
Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities
We compute the one-dimensional configuration sums of the ABF model using the
fermionic technique introduced in part I of this paper. Combined with the
results of Andrews, Baxter and Forrester, we find proof of polynomial
identities for finitizations of the Virasoro characters
as conjectured by Melzer. In the thermodynamic limit
these identities reproduce Rogers--Ramanujan type identities for the unitary
minimal Virasoro characters, conjectured by the Stony Brook group. We also
present a list of additional Virasoro character identities which follow from
our proof of Melzer's identities and application of Bailey's lemma.Comment: 28 pages, Latex, 7 Postscript figure
Interdependence between integrable cosmological models with minimal and non-minimal coupling
We consider the relation between exact solutions of cosmological models
having minimally and non-minimally coupled scalar fields. This is done for a
particular class of solvable models which, in the Einstein frame, have
potentials depending on hyperbolic functions and in the Jordan frame, where the
non-minimal coupling is conformal, possess a relatively simple dynamics. We
show that a particular model in this class can be generalized to the cases of
closed and open Friedmann universes and still exhibits a simple dynamics.
Further we illustrate the conditions for the existences of bounces in some
sub-classes of the set of integrable models we have considered.Comment: 15 pages, v2: figures and references added, accepted for publication
in CQ
Shockley model description of surface states in topological insulators
We show that the surface states in topological insulators can be understood
based on a well-known Shockley model, a one-dimensional tight-binding model
with two atoms per elementary cell, connected via alternating tunneling
amplitudes. We generalize the one-dimensional model to the three-dimensional
case corresponding to the sequence of layers connected via the amplitudes,
which depend on the in-plane momentum p = (p_x,p_y). The Hamiltonian of the
model is described a (2 x 2) Hamiltonian with the off-diagonal element t(k,p)
depending also on the out-of-plane momentum k. We show that the complex
function t(k,p) defines the properties of the surface states. The surface
states exist for the in-plane momenta p, where the winding number of the
function t(k,p) is non-zero as k is changed from 0 to 2pi. The sign of the
winding number defines the sublattice on which the surface states are
localized. The equation t(k,p)=0 defines a vortex line in the three-dimensional
momentum space. The projection of the vortex line on the two-dimensional
momentum p space encircles the domain where the surface states exist. We
illustrate how our approach works for a well-known TI model on a diamond
lattice. We find that different configurations of the vortex lines are
responsible for the "weak" and "strong" topological insulator phases. The phase
transition occurs when the vortex lines reconnect from spiral to circular form.
We discuss the Shockley model description of Bi_2Se_3 and the applicability of
the continuous approximation for the description of the topological edge
states. We conclude that the tight-binding model gives a better description of
the surface states.Comment: 18 pages, 17 figures; version 3: Sections I-IV revised, Section VII
added, Refs. [33]-[35] added; Corresponds to the published versio
Exceptional structure of the dilute A model: E and E Rogers--Ramanujan identities
The dilute A lattice model in regime 2 is in the universality class of
the Ising model in a magnetic field. Here we establish directly the existence
of an E structure in the dilute A model in this regime by expressing
the 1-dimensional configuration sums in terms of fermionic sums which
explicitly involve the E root system. In the thermodynamic limit, these
polynomial identities yield a proof of the E Rogers--Ramanujan identity
recently conjectured by Kedem {\em et al}.
The polynomial identities also apply to regime 3, which is obtained by
transforming the modular parameter by . In this case we find an
A_1\times\mbox{E}_7 structure and prove a Rogers--Ramanujan identity of
A_1\times\mbox{E}_7 type. Finally, in the critical limit, we give
some intriguing expressions for the number of -step paths on the A
Dynkin diagram with tadpoles in terms of the E Cartan matrix. All our
findings confirm the E and E structure of the dilute A model found
recently by means of the thermodynamic Bethe Ansatz.Comment: 9 pages, 1 postscript figur
- …