409,424 research outputs found

    Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Full text link
    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.Comment: 12 pages and 3 figures in postscrip

    Synergetic modelling of the Russian Federation’s energy system parameters

    Full text link
    The energy system in any country is the basis of the whole economy. The level of its development largely determines the quantity and quality of economic entities, periods of economic growth, fall and stagnation. A high percentage of the power-deficient municipalities in the Russian Federation shows the substantive issues in this sphere that carries a threat to the energy security of the state. One of the promising trends for enhancing the energy security is the renewable energy sources (RES). Their use has the obvious benefits: it provides electricity to power-deficient and inaccessible areas, contributes to the introduction and spread of new technologies, thus solving the important social and economic problem. At that, it is important to determine the optimum ratio using of the recovery of renewable and conventional energy sources (CES). One of the main challenges in this regard is to build a model that adequately reflects the ratio of renewable and conventional energy sources in the Russian energy system. The paper presents the results of a synergistic approach to the construction of such a model. The Lotka- Volterra model was the main instrument used, which allowed to study a behavior pattern of the considered systems on the basis of the simplified regularities. It was found that the best possible qualitative “jump” in the Russian energy sector was in 2008. The calculations allowed to investigate the behavior of the Russian energy system with the variation of the initial conditions and to assess the validity of the targets for the share of electricity produced through the use of renewable energy in the total electric power of the country

    Matter formed at the BNL relativistic heavy ion collider

    Full text link
    We suggest that the "new form of matter" found just above TcT_c by RHIC is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π\pi, σ\sigma, ρ\rho and a1a_1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at TcT_c just as they do from below TcT_c as predicted by the vector manifestation (VM in short) of hidden local symmetry. This could explain the rapid rise in entropy up to TcT_c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.Comment: Final versio

    Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities

    Get PDF
    We compute the one-dimensional configuration sums of the ABF model using the fermionic technique introduced in part I of this paper. Combined with the results of Andrews, Baxter and Forrester, we find proof of polynomial identities for finitizations of the Virasoro characters χb,a(r1,r)(q)\chi_{b,a}^{(r-1,r)}(q) as conjectured by Melzer. In the thermodynamic limit these identities reproduce Rogers--Ramanujan type identities for the unitary minimal Virasoro characters, conjectured by the Stony Brook group. We also present a list of additional Virasoro character identities which follow from our proof of Melzer's identities and application of Bailey's lemma.Comment: 28 pages, Latex, 7 Postscript figure

    Interdependence between integrable cosmological models with minimal and non-minimal coupling

    Full text link
    We consider the relation between exact solutions of cosmological models having minimally and non-minimally coupled scalar fields. This is done for a particular class of solvable models which, in the Einstein frame, have potentials depending on hyperbolic functions and in the Jordan frame, where the non-minimal coupling is conformal, possess a relatively simple dynamics. We show that a particular model in this class can be generalized to the cases of closed and open Friedmann universes and still exhibits a simple dynamics. Further we illustrate the conditions for the existences of bounces in some sub-classes of the set of integrable models we have considered.Comment: 15 pages, v2: figures and references added, accepted for publication in CQ

    Shockley model description of surface states in topological insulators

    Full text link
    We show that the surface states in topological insulators can be understood based on a well-known Shockley model, a one-dimensional tight-binding model with two atoms per elementary cell, connected via alternating tunneling amplitudes. We generalize the one-dimensional model to the three-dimensional case corresponding to the sequence of layers connected via the amplitudes, which depend on the in-plane momentum p = (p_x,p_y). The Hamiltonian of the model is described a (2 x 2) Hamiltonian with the off-diagonal element t(k,p) depending also on the out-of-plane momentum k. We show that the complex function t(k,p) defines the properties of the surface states. The surface states exist for the in-plane momenta p, where the winding number of the function t(k,p) is non-zero as k is changed from 0 to 2pi. The sign of the winding number defines the sublattice on which the surface states are localized. The equation t(k,p)=0 defines a vortex line in the three-dimensional momentum space. The projection of the vortex line on the two-dimensional momentum p space encircles the domain where the surface states exist. We illustrate how our approach works for a well-known TI model on a diamond lattice. We find that different configurations of the vortex lines are responsible for the "weak" and "strong" topological insulator phases. The phase transition occurs when the vortex lines reconnect from spiral to circular form. We discuss the Shockley model description of Bi_2Se_3 and the applicability of the continuous approximation for the description of the topological edge states. We conclude that the tight-binding model gives a better description of the surface states.Comment: 18 pages, 17 figures; version 3: Sections I-IV revised, Section VII added, Refs. [33]-[35] added; Corresponds to the published versio

    Exceptional structure of the dilute A3_3 model: E8_8 and E7_7 Rogers--Ramanujan identities

    Get PDF
    The dilute A3_3 lattice model in regime 2 is in the universality class of the Ising model in a magnetic field. Here we establish directly the existence of an E8_8 structure in the dilute A3_3 model in this regime by expressing the 1-dimensional configuration sums in terms of fermionic sums which explicitly involve the E8_8 root system. In the thermodynamic limit, these polynomial identities yield a proof of the E8_8 Rogers--Ramanujan identity recently conjectured by Kedem {\em et al}. The polynomial identities also apply to regime 3, which is obtained by transforming the modular parameter by q1/qq\to 1/q. In this case we find an A_1\times\mbox{E}_7 structure and prove a Rogers--Ramanujan identity of A_1\times\mbox{E}_7 type. Finally, in the critical q1q\to 1 limit, we give some intriguing expressions for the number of LL-step paths on the A3_3 Dynkin diagram with tadpoles in terms of the E8_8 Cartan matrix. All our findings confirm the E8_8 and E7_7 structure of the dilute A3_3 model found recently by means of the thermodynamic Bethe Ansatz.Comment: 9 pages, 1 postscript figur
    corecore