282 research outputs found

    Neuroimaging in bulimia nervosa and binge eating disorder: a systematic review.

    Full text link
    OBJECTIVE: In recent decades there has been growing interest in the use of neuroimaging techniques to explore the structural and functional brain changes that take place in those with eating disorders. However, to date, the majority of research has focused on patients with anorexia nervosa. This systematic review addresses a gap in the literature by providing an examination of the published literature on the neurobiology of individuals who binge eat; specifically, individuals with bulimia nervosa (BN) and binge eating disorder (BED). METHODS: A systematic review was conducted in accordance with PRISMA guidelines using PubMed, PsycInfo, Medline and Web of Science, and additional hand searches through reference lists. 1,003 papers were identified in the database search. Published studies were included if they were an original research paper written in English; studied humans only; used samples of participants with a diagnosed eating disorder characterised by recurrent binge eating; included a healthy control sample; and reported group comparisons between clinical groups and healthy control groups. RESULTS: Thirty-two papers were included in the systematic review. Significant heterogeneity in the methods used in the included papers coupled with small sample sizes impeded the interpretation of results. Twenty-one papers utilised functional Magnetic Resonance Imaging (fMRI); seven papers utilized Magnetic Resonance Imaging (MRI) with one of these using both MRI and Positron Emission Technology (PET); three studies used Single-Photon Emission Computed Tomography (SPECT) and one study used PET only. A small number of consistent findings emerged in individuals in the acute phase of illness with BN or BED including: volume reduction and increases across a range of areas; hypoactivity in the frontostriatal circuits; and aberrant responses in the insula, amygdala, middle frontal gyrus and occipital cortex to a range of different stimuli or tasks; a link between illness severity in BN and neural changes; diminished attentional capacity and early learning; and in SPECT studies, increased rCBF in relation to disorder-related stimuli. CONCLUSIONS: Studies included in this review are heterogenous, preventing many robust conclusions from being drawn. The precise neurobiology of BN and BED remains unclear and ongoing, large-scale investigations are required. One clear finding is that illness severity, exclusively defined as the frequency of binge eating or bulimic episodes, is related to greater neural changes. The results of this review indicate additional research is required, particularly extending findings of reduced cortical volumes and diminished activity in regions associated with self-regulation (frontostriatal circuits) and further exploring responses to disorder-related stimuli in people with BN and BED

    Testing Protein Leverage in Lean Humans: A Randomised Controlled Experimental Study

    Get PDF
    A significant contributor to the rising rates of human obesity is an increase in energy intake. The ‘protein leverage hypothesis’ proposes that a dominant appetite for protein in conjunction with a decline in the ratio of protein to fat and carbohydrate in the diet drives excess energy intake and could therefore promote the development of obesity. Our aim was to test the ‘protein leverage hypothesis’ in lean humans by disguising the macronutrient composition of foods offered to subjects under ad libitum feeding conditions. Energy intakes and hunger ratings were measured for 22 lean subjects studied over three 4-day periods of in-house dietary manipulation. Subjects were restricted to fixed menus in random order comprising 28 foods designed to be similar in palatability, availability, variety and sensory quality and providing 10%, 15% or 25% energy as protein. Nutrient and energy intake was calculated as the product of the amount of each food eaten and its composition. Lowering the percent protein of the diet from 15% to 10% resulted in higher (+12±4.5%, p = 0.02) total energy intake, predominantly from savoury-flavoured foods available between meals. This increased energy intake was not sufficient to maintain protein intake constant, indicating that protein leverage is incomplete. Urinary urea on the 10% and 15% protein diets did not differ statistically, nor did they differ from habitual values prior to the study. In contrast, increasing protein from 15% to 25% did not alter energy intake. On the fourth day of the trial, however, there was a greater increase in the hunger score between 1–2 h after the 10% protein breakfast versus the 25% protein breakfast (1.6±0.4 vs 25%: 0.5±0.3, p = 0.005). In our study population a change in the nutritional environment that dilutes dietary protein with carbohydrate and fat promotes overconsumption, enhancing the risk for potential weight gain

    Patients with treated indolent lymphomas immunized with BNT162b2 have reduced anti-spike neutralizing IgG to SARS-CoV-2 variants, but preserved antigen-specific T cell responses

    Get PDF
    Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p =.0002 for both). Anti-spike IgG correlated with lymphocyte count (r =.63; p =.002), and time from treatment (r =.56; p =.007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p =.03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p =.0008) and HC (p <.0001). Anti-spike IgG correlated with neutralization of the delta variant (r =.62, p <.0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p <.0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p =.004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant

    Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1β-mediated cartilage degradation

    Get PDF
    Introduction: In inflammatory joint disease, such as osteoarthritis (OA), there is an increased level of proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines stimulate the production of matrix metalloproteinases (MMPs), which leads to the degradation of the cartilage extracellular matrix and the loss of key structural components such as sulphated glycosaminoglycan (sGAG) and collagen II. The aim of this study was to examine the therapeutic potential of n-3 polyunsaturated fatty acids (PUFAs) in an in vitro model of cartilage inflammation. Methods: Two specific n-3 compounds were tested, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), each at 0.1, 1 and 10 μM. Full thickness bovine cartilage explants, 5 mm in diameter, were cultured for 5 days with or without IL-1β and in the presence or absence of each n-3 compound. The media were replaced every 24 hours and assayed for sGAG content using the 1,9-dimethylmethylene blue (DMB) method. Chondrocyte viability was determined at the end of the culture period using fluorescence microscopy to visualise cells labelled with calcein AM and ethidium homodimer. Results: Treatment with IL-1β (10 ng.ml-1) produced a large increase in sGAG release compared to untreated controls, but with no effect on cell viability, which was maintained above 80% for all treatments. In the absence of IL-1β, both n-3 compounds induced a mild catabolic response with increased loss of sGAG, particularly at 10 μM. By contrast, in the presence of IL-1β, both EPA and DHA at 0.1 and 1 μM significantly reduced IL-1β-mediated sGAG loss. The efficacy of the EPA treatment was maintained at approximately 75% throughout the 5-day period. However, at the same concentrations, the efficacy of DHA, although initially greater, reduced to approximately half that of EPA after 5 days. For both EPA and DHA, the highest dose of 10 μM was less effective. Conclusions: The results support the hypothesis that n-3 compounds are anti-inflammatory through competitive inhibition of the arachidonic acid oxidation pathway. The efficacy of these compounds is likely to be even greater at more physiological levels of IL-1β. Thus we suggest that n-3 PUFAs, particularly EPA, have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory joint disease

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries
    corecore