3,432 research outputs found

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    Biological activities of aerial parts of Tylophora hirsuta Wall

    Get PDF
    No Abstrac

    Impact of Tandem Repeats on the Scaling of Nucleotide Sequences

    Full text link
    Techniques such as detrended fluctuation analysis (DFA) and its extensions have been widely used to determine the nature of scaling in nucleotide sequences. In this brief communication we show that tandem repeats which are ubiquitous in nucleotide sequences can prevent reliable estimation of possible long-range correlations. Therefore, it is important to investigate the presence of tandem repeats prior to scaling exponent estimation.Comment: 14 Pages, 3 Figure

    Chiral Symmetry Breaking and Confinement Beyond Rainbow-Ladder Truncation

    Full text link
    A non-perturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and provides a gauge independent description for dynamical chiral symmetry breaking (DCSB) and confinement has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics (QED) and quantum chromodynamics (QCD). In this paper, we demonstrate that the same simple and practical form of the vertex can achieve these objectives not only in 4-dimensional quenched QED (qQED4) but also in its 3-dimensional counterpart (qQED3). Employing this convenient form of the vertex \emph{ansatz} into the Schwinger-Dyson equation (SDE) for the fermion propagator, we observe that it renders the critical coupling in qQED4 markedly gauge independent in contrast with the bare vertex and improves on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent order parameters for confinement and DCSB in qQED3.Comment: 8 pages, 6 figure

    A fresh look at the (non-)Abelian Landau-Khalatnikov-Fradkin transformations

    Get PDF
    The Landau-Khalatnikov-Fradkin transformations (LKFTs) allow to interpolate nn-point functions between different gauges. We first offer an alternative derivation of these LKFTs for the gauge and fermions field in the Abelian (QED) case when working in the class of linear covariant gauges. Our derivation is based on the introduction of a gauge invariant transversal gauge field, which allows a natural generalization to the non-Abelian (QCD) case of the LKFTs. To our knowledge, within this rigorous formalism, this is the first construction of the LKFTs beyond QED. The renormalizability of our setup is guaranteed to all orders. We also offer a direct path integral derivation in the non-Abelian case, finding full consistency.Comment: 16 page

    Massive Dirac fermions and the zero field quantum Hall effect

    Full text link
    Through an explicit calculation for a Lagrangian in quantum electrodynamics in (2+1)-space--time dimensions (QED3_3), making use of the relativistic Kubo formula, we demonstrate that the filling factor accompanying the quantized electrical conductivity for massive Dirac fermions of a single species in two spatial dimensions is a half (in natural units) when time reversal and parity symmetries of the Lagrangian are explicitly broken by the fermion mass term. We then discuss the most general form of the QED3_3 Lagrangian, both for irreducible and reducible representations of the Dirac matrices in the plane, with emphasis on the appearance of a Chern-Simons term. We also identify the value of the filling factor with a zero field quantum Hall effect (QHE).Comment: 15 pages. Accepted in Jour. Phys.

    Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics

    Get PDF
    We study the gauge covariance of the massive fermion propagator in three as well as four dimensional Quantum Electrodynamics (QED). Starting from its value at the lowest order in perturbation theory, we evaluate a non-perturbative expression for it by means of its Landau-Khalatnikov-Fradkin (LKF) transformation. We compare the perturbative expansion of our findings with the known one loop results and observe perfect agreement upto a gauge parameter independent term, a difference permitted by the structure of the LKF transformations.Comment: 9 pages, no figures, uses revte

    Constraint on the QED Vertex from the Mass Anomalous Dimension Îłm=1\gamma_m = 1

    Full text link
    We discuss the structure of the non-perturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed.Comment: 8 pages, LaTeX, October 199
    • …
    corecore