811 research outputs found
Poisson and Porter-Thomas Fluctuations in off-Yrast Rotational Transitions
Fluctuations associated with stretched E2 transitions from high spin levels
in nuclei around Yb are investigated by a cranked shell model extended
to include residual two-body interactions. It is found that the gamma-ray
energies behave like random variables and the energy spectra show the Poisson
fluctuation, in the cranked mean field model without the residual interaction.
With two-body residual interaction included, discrete transition pattern with
unmixed rotational bands is still valid up to around 600 keV above yrast, in
good agreement with experiments. At higher excitation energy, a gradual onset
of rotational damping emerges. At 1.8 MeV above yrast, complete damping is
observed with GOE type fluctuations for both energy levels and transition
strengths(Porter-Thomas fluctuations).Comment: 21 pages, phyzzx, YITP/K-99
Fidelity and coherence measures from interference
By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g., spin or polarization) of the interfering particle, preparing it in states ρA or ρB in the respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as well as the locality or nonlocality of the preparations, but otherwise depends only on the states ρA and ρB and not the individual preparation processes themselves. This allows us to define interferometric measures which probe locality and correlation properties of spatially or temporally separated processes, and can be used to differentiate between processes that cannot be distinguished by direct process tomography using only the internal state of the particle
Correlations in Nuclear Masses
It was recently suggested that the error with respect to experimental data in
nuclear mass calculations is due to the presence of chaotic motion. The theory
was tested by analyzing the typical error size. A more sensitive quantity, the
correlations of the mass error between neighboring nuclei, is studied here. The
results provide further support to this physical interpretation.Comment: 4 pages, 2 figure
Spreading widths of giant resonances in spherical nuclei: damped transient response
We propose the universal approach to describe spreading widths of monopole,
dipole and quadrupole giant resonances in heavy and superheavy spherical
nuclei. Our approach is based on the ideas of the random matrix distribution of
the coupling between one-phonon and two-phonon states generated in the random
phase approximation. We use the Skyrme interaction SLy4 as our model
Hamiltonian to create a single-particle spectrum and to analyze excited states
of the doubly magic nuclei Sn, Pb and 126. Our results
demonstrate that the universal approach enables to describe gross structure of
the spreading widths of the considered giant resonances.Comment: 6 pages, 2 figure
Correlation studies of fission fragment neutron multiplicities
We calculate neutron multiplicities from fission fragments with specified
mass numbers for events having a specified total fragment kinetic energy. The
shape evolution from the initial compound nucleus to the scission
configurations is obtained with the Metropolis walk method on the
five-dimensional potential-energy landscape, calculated with the
macroscopic-microscopic method for the three-quadratic-surface shape family.
Shape-dependent microscopic level densities are used to guide the random walk,
to partition the intrinsic excitation energy between the two proto-fragments at
scission, and to determine the spectrum of the neutrons evaporated from the
fragments. The contributions to the total excitation energy of the resulting
fragments from statistical excitation and shape distortion at scission is
studied. Good agreement is obtained with available experimental data on neutron
multiplicities in correlation with fission fragments from U(n,f). At higher neutron energies a superlong fission mode appears which
affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure
Collective motion in quantum diffusive environment
The general problem of dissipation in macroscopic large-amplitude collective
motion and its relation to energy diffusion of intrinsic degrees of freedom of
a nucleus is studied. By applying the cranking approach to the nuclear
many-body system, a set of coupled dynamical equations for the collective
classical variable and the quantum mechanical occupancies of the intrinsic
nuclear states is derived. Different dynamical regimes of the intrinsic nuclear
motion and its consequences on time properties of collective dissipation are
discussed.Comment: 15 pages, 5 figure
- …