37 research outputs found

    The Two Phases of Galaxy Formation

    Full text link
    Cosmological simulations of galaxy formation appear to show a two-phase character with a rapid early phase at z>2 during which in-situ stars are formed within the galaxy from infalling cold gas followed by an extended phase since z<3 during which ex-situ stars are primarily accreted. In the latter phase massive systems grow considerably in mass and radius by accretion of smaller satellite stellar systems formed at quite early times (z>3) outside of the virial radius of the forming central galaxy. These tentative conclusions are obtained from high resolution re-simulations of 39 individual galaxies in a full cosmological context with present-day virial halo masses ranging from 7e11 M_sun h^-1 < M_vir < 2.7e13 M_sun h^-1 and central galaxy masses between 4.5e10 M_sun h^-1 < M_* < 3.6e11 M_sun h^-1. The simulations include the effects of a uniform UV background, radiative cooling, star formation and energetic feedback from SNII. The importance of stellar accretion increases with galaxy mass and towards lower redshift. In our simulations lower mass galaxies (M<9e10Msunh1)accreteabout60percentoftheirpresentdaystellarmass.Highmassgalaxy(M_* < 9e10 M_sun h^-1) accrete about 60 per cent of their present-day stellar mass. High mass galaxy (M_* > 1.7e11 M_sun h^-1) assembly is dominated by accretion and merging with about 80 per cent of the stars added by the present-day. In general the simulated galaxies approximately double their mass since z=1. For massive systems this mass growth is not accompanied by significant star formation. The majority of the in-situ created stars is formed at z>2, primarily out of cold gas flows. We recover the observational result of archaeological downsizing, where the most massive galaxies harbor the oldest stars. We find that this is not in contradiction with hierarchical structure formation. Most stars in the massive galaxies are formed early on in smaller structures, the galaxies themselves are assembled late.Comment: 13 pages, 13 figures, accepted for publication in Ap

    Exact Relativistic Static Charged Dust Disks and Non-axisymmetric Structures

    Full text link
    The well-known ``displace, cut and reflect'' method used to generate disks from given solutions of Einstein field equations is applied to the superposition of twoextreme Reissner-Nordstrom black holes to construct disks made of charged dust and alsonon-axisymmetric planar distributions of charged dust on the z=0 plane. They are symmetric with respect to twoor one coordinate axes, depending whether the black holes have equal or unequal masses, respectively.For these non-axisymmetric distributions of matter we also study the effective potential for geodesic motion of neutral test particles.Comment: Classical and Quantum Gravity (in press). 15 pages, LaTex, 8 .eps fig

    Generalised Kundt waves and their physical interpretation

    Full text link
    We present the complete family of space-times with a non-expanding, shear-free, twist-free, geodesic principal null congruence (Kundt waves) that are of algebraic type III and for which the cosmological constant (Λc\Lambda_c) is non-zero. The possible presence of an aligned pure radiation field is also assumed. These space-times generalise the known vacuum solutions of type N with arbitrary Λc\Lambda_c and type III with Λc=0\Lambda_c=0. It is shown that there are two, one and three distinct classes of solutions when Λc\Lambda_c is respectively zero, positive and negative. The wave surfaces are plane, spherical or hyperboloidal in Minkowski, de Sitter or anti-de Sitter backgrounds respectively, and the structure of the family of wave surfaces in the background space-time is described. The weak singularities which occur in these space-times are interpreted in terms of envelopes of the wave surfaces.Comment: 16 pages including 2 figures. To appear in Classical and Quantum Gra

    Comments on photonic shells

    Full text link
    We investigate in detail the special case of an infinitely thin static cylindrical shell composed of counter-rotating photons on circular geodetical paths separating two distinct parts of Minkowski spacetimes--one inside and the other outside the shell--and compare it to a static disk shell formed by null particles counter-rotating on circular geodesics within the shell located between two sections of flat spacetime. One might ask whether the two cases are not, in fact, merely one

    Geodesic motion in the Kundt spacetimes and the character of envelope singularity

    Full text link
    We investigate geodesics in specific Kundt type N (or conformally flat) solutions to Einstein's equations. Components of the curvature tensor in parallelly transported tetrads are then explicitly evaluated and analyzed. This elucidates some interesting global properties of the spacetimes, such as an inherent rotation of the wave-propagation direction, or the character of singularities. In particular, we demonstrate that the characteristic envelope singularity of the rotated wave-fronts is a (non-scalar) curvature singularity, although all scalar invariants of the Riemann tensor vanish there.Comment: 21 pages, 3 figures. To appear in Class. Quantum Gra

    Solvegeometry gravitational waves

    Full text link
    In this paper we construct negatively curved Einstein spaces describing gravitational waves having a solvegeometry wave-front (i.e., the wave-fronts are solvable Lie groups equipped with a left-invariant metric). Using the Einstein solvmanifolds (i.e., solvable Lie groups considered as manifolds) constructed in a previous paper as a starting point, we show that there also exist solvegeometry gravitational waves. Some geometric aspects are discussed and examples of spacetimes having additional symmetries are given, for example, spacetimes generalising the Kaigorodov solution. The solvegeometry gravitational waves are also examples of spacetimes which are indistinguishable by considering the scalar curvature invariants alone.Comment: 10 pages; v2:more discussion and result

    Counterrotating perfect fluid discs as sources of electrovacuum static spacetimes

    Full text link
    The interpretation of some electrovacuum spacetimes in terms of counterrotating perfect fluid discs is presented. The interpretation is mades by means of an "inverse problem" approach used to obtain disc sources of known static solutions of the Einstein-Maxwell equations. In order to do such interpretation, a detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin discs with nonzero radial pressure. Four simple families of models of counterrotating charged discs based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and charged and magnetized Darmois electrovacuum metrics are considered where we obtain some discs with a CRM well behaved.Comment: 22 pages, 4 figures, LaTeX2

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Study of the transverse mass spectra of strange particles in Pb-Pb collisions at 158 A GeV/c

    Full text link
    The NA57 experiment has collected high statistics, high purity samples of \PKzS and \PgL, Ξ\Xi and Ω\Omega hyperons produced in Pb-Pb collisions at 158 AA GeV/cc. In this paper we present a study of the transverse mass spectra of these particles for a sample of events corresponding to the most central 53% of the inelastic Pb-Pb cross-section. We analyse the transverse mass distributions in the framework of the blast-wave model for the full sample and, for the first time at the SPS, as a function of the event centrality.Comment: 22 pages, 14 figures, submitted to J. Phys. G: Nucl. Phy
    corecore