49,493 research outputs found
Implementation of uniform perturbation method for potential flow past axisymmetric and two-dimensional bodies
The aerodynamic characteristics of potential flow past an axisymmetric slender body and a thin airfoil are calculated using a uniform perturbation analysis method. The method is based on the superposition of potentials of point singularities distributed inside the body. The strength distribution satisfies a linear integral equation by enforcing the flow tangency condition on the surface of the body. The complete uniform asymptotic expansion of its solution is obtained with respect to the slenderness ratio by modifying and adapting an existing technique. Results calculated by the perturbation analysis method are compared with the existing surface singularity panel method and some available analytical solutions for a number of cases under identical conditions. From these comparisons, it is found that the perturbation analysis method can provide quite accurate results for bodies with small slenderness ratio. The present method is much simpler and requires less memory and computation time than existing surface singularity panel methods of comparable accuracy
Influence of bandwidth restriction on the signal-to-noise performance of a modulated PCM/NRZ signal, part 2 Final report
Influence of bandwidth restriction on signal to noise performance of modulated PCM/NRZ signa
Strength Modeling Report
Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements
Odontoameloblastoma with extensive chondroid matrix deposition in a guinea pig
Odontoameloblastomas (previously incorporated within ameloblastic odontomas) are matrix-producing odontogenic mixed tumors and are closely related in histologic appearance to the 2 other types of matrix-producing odontogenic mixed tumors: odontomas and ameloblastic fibro-odontomas. The presence or absence of intralesional, induced non-neoplastic tissue must be accounted for in the diagnosis. Herein we describe a naturally occurring odontoameloblastoma with extensive chondroid cementum deposition in a guinea pig (Cavia porcellus). Microscopically, the mass featured palisading neoplastic odontogenic epithelium closely apposed to ribbons and rings of a pink dental matrix (dentinoid), alongside extensive sheets and aggregates of chondroid cementum. The final diagnosis was an odontoameloblastoma given the abundance of odontogenic epithelium in association with dentinoid but a paucity of pulp ectomesenchyme. Chondroid cementum is an expected anatomical feature of cavies, and its presence within the odontoameloblastoma was interpreted as a response of the ectomesenchyme of the dental follicle to the described neoplasm. Our case illustrates the inductive capabilities of odontoameloblastomas while highlighting species-specific anatomy that has resulted in a histologic appearance unique to cavies and provides imaging and histologic data to aid diagnosis of these challenging lesions
Finite Density Algorithm in Lattice QCD -- a Canonical Ensemble Approach
I will review the finite density algorithm for lattice QCD based on finite
chemical potential and summarize the associated difficulties. I will propose a
canonical ensemble approach which projects out the finite baryon number sector
from the fermion determinant. For this algorithm to work, it requires an
efficient method for calculating the fermion determinant and a Monte Carlo
algorithm which accommodates unbiased estimate of the probability. I shall
report on the progress made along this direction with the Pad\'{e} - Z
estimator of the determinant and its implementation in the newly developed
Noisy Monte Carlo algorithm.Comment: Invited talk at Nankai Symposium on Mathematical Physics, Tianjin,
Oct. 2001, 18 pages, 3 figures; expanded and references adde
A middleware for a large array of cameras
Large arrays of cameras are increasingly being employed for producing high quality image sequences needed for motion analysis research. This leads to the logistical problem with coordination and control of a large number of cameras. In this paper, we used a lightweight multi-agent system for coordinating such camera arrays. The agent framework provides more than a remote sensor access API. It allows reconfigurable and transparent access to cameras, as well as software agents capable of intelligent processing. Furthermore, it eases maintenance by encouraging code reuse. Additionally, our agent system includes an automatic discovery mechanism at startup, and multiple language bindings. Performance tests showed the lightweight nature of the framework while validating its correctness and scalability. Two different camera agents were implemented to provide access to a large array of distributed cameras. Correct operation of these camera agents was confirmed via several image processing agents
Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density
We calculate the two-pion correlation function for an expanding hadron source
with a finite baryon density. The space-time evolution of the source is
described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT)
radius is extracted after effects of collective expansion and multiple
scattering on the HBT interferometry have been taken into account, using
quantum probability amplitudes in a path-integral formalism. We find that this
radius is substantially smaller than the HBT radius extracted from the
freeze-out configuration.Comment: 4 pages, 2 figure
- …