6 research outputs found

    Genetic Targeting in Cerebellar Purkinje Cells: an Update

    Get PDF
    Since the last review paper published in Cerebellum in 2002 [1], there has been a substantial increase in the number of experiments utilizing transgenic manipulations in murine cerebellar Purkinje cells. Most of these approaches were made possible with the use of the Cre/loxP methodology and pcp2/L7 based Cre recombinase expressing transgenic mouse strains. This review aims to summarize all studies which used Purkinje cell specific transgenesis since the first use of mouse strain with Purkinje cell specific Cre expression in 2002

    Fear Extinction and Predictive Trait-Like Inter-Individual Differences in Rats Lacking the Serotonin Transporter

    No full text
    Anxiety disorders are associated with a failure to sufficiently extinguish fear memories. The serotonergic system (5-hydroxytryptamine, 5-HT) with the 5-HT transporter (5-HTT, SERT) is strongly implicated in the regulation of anxiety and fear. In the present study, we examined the effects of SERT deficiency on fear extinction in a differential fear conditioning paradigm in male and female rats. Fear-related behavior displayed during acquisition, extinction, and recovery, was measured through quantification of immobility and alarm 22-kHz ultrasonic vocalizations (USV). Trait-like inter-individual differences in novelty-seeking, anxiety-related behavior, habituation learning, cognitive performance, and pain sensitivity were examined for their predictive value in forecasting fear extinction. Our results show that SERT deficiency strongly affected the emission of 22-kHz USV during differential fear conditioning. During acquisition, extinction, and recovery, SERT deficiency consistently led to a reduction in 22-kHz USV emission. While SERT deficiency did not affect immobility during acquisition, genotype differences started to emerge during extinction, and during recovery rats lacking SERT showed higher levels of immobility than wildtype littermate controls. Recovery was reflected in increased levels of immobility but not 22-kHz USV emission. Prominent sex differences were evident. Among several measures for trait-like inter-individual differences, anxiety-related behavior had the best predictive quality

    The Modification of the Ketogenic Diet Mitigates Its Stunting Effects in Rodents

    No full text
    The high fat and low carbohydrate ketogenic diet (HFKD) is extensively studied within the fields of numerous diseases, including cancer and neurological disorders. Since most studies incorporate animal models, ensuring the quality of ketogenic rodent diets is important, both in the context of laboratory animal welfare as well as for the accuracy of the obtained results. In this study we implemented a modification to a commonly-used ketogenic rodent chow by replacing non-resorbable cellulose with wheat bran. We assessed the effects of month-long treatment with either the unmodified or the modified HFKD on the growth and development of young male rats. Daily body weight, functional performance, and brain morphometric parameters were assessed to evaluate the influence of both applied diets on rodent development. Our results revealed that the unmodified ketogenic chow induced strong side effects that included weakness, emaciation, and brain undergrowth concomitant to growth inhibition. However, application of the ketogenic chow supplemented with wheat bran suppressed these adverse side effects, which was associated with the restoration of insulin-like growth factor 1 and a decrease in corticosterone levels. We have also shown that the advantageous results of the modified HFKD are not species- or sex-specific. Our data indicate that the proposed HFKD modification even allows for its application in young animals, without causing detrimental side effects.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Serotonin 5-HT6</DN receptor ligands and butyrylcholinesterase inhibitors displaying antioxidant activity - design, synthesis and biological evaluation of multifunctional agents against Alzheimers disease

    No full text
    Neurodegeneration leading to Alzheimer鈥檚 disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT(6) receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman鈥檚 assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT(6) receptor ligand (K(i) = 22 nM) and human BuChE inhibitor (IC(50) = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 渭M). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer鈥檚 disease-related processes might be further developed as multifunctional ligands against the disease
    corecore