12 research outputs found

    Genome-wide in silico identification, characterization and transcriptional analysis of the family of growth-regulating factors in common bean (Phaseolus vulgaris L.) subjected to polyethylene glycol-induced drought stress

    No full text
    According to most recent findings, growth regulating factors (GRFs) are plant-specific transcription factors (TFs) that play important roles in many processes, including abiotic and biotic stress response mechanisms. Completion of the common bean (Phaseolus vulgaris) genome project has provided researchers with the opportunity to identify all GRF genes in this species. With this aim, a genome-wide in silico study was performed and 10 GRF proteins (called PhvGRFs) were identified in the common bean genome. Conserved and mandatory motifs (QLQ and WRC) were confirmed in all identified PhvGRFs and two segmental duplication events were determined. Most of the PhvGRFs were found to be more similar to Arabidopsis thaliana GRFs than to Zea mays GRFs in a phylogenetic tree. According to the expression analysis of 10 PhvGRFs, inversely related expression patterns were observed in the roots of Yakutiye and Zulbiye cultivars based on their capacity to adopt to drought stress. After drought treatment of the Zulbiye cultivar, a drought-sensitive common bean cultivar, PhvGRF1, PhvGRF2, PhvGRF3, PhvGRF5, PhvGRF6, PhvGRF9 and PhvGRF10 genes were upregulated 2- to 4-fold in root tissues, as compared to the untreated control. The trend of PhvGRF1, PhvGRF2, PhvGRF3, PhvGRF5, PhvGRF6, PhvGRF7, PhvGRF9 and PhvGRF10 genes showed a consistent decline of 2- to 6-fold in root tissues of the drought-tolerant Yakutiye cultivar subjected to 24 h of drought stress. We demonstrated that the expression patterns of the identified PhvGRFs correlated with the drought-stress response in a cultivar-specific manner in the common bean. We suggest that members of the GRF family can also be used for genetic engineering applications in the common bean

    Molecular Responses of Plants to Stress Conditions

    No full text
    Bitkiler sesil doğaları gereği yaşam döngüleri boyunca büyüme ve gelişmelerini olumsuz yönde etkileyecek birçok stres faktörü ile karşılaşırlar. Biyotik ve abiyotik kökenli olabilen bu stres faktörleri bitkilerde fizyolojik ve biyokimyasal zararlar oluşturarak, ürün nicelik ve niteliğini olumsuz yönde etkileyebilir. Bitkiler bu olumsuz etkileri azaltmak veya engellemek amacıyla moleküler savunma mekanizmalarına sahiptirler. Bu cevap mekanizmaları makromoleküllerin ve iyonların homeostasisi, koruyucu moleküllerin sentezi, reaktif oksijen türlerinin (ROS) oluşumu ve detoksifikasyon olmak üzere üç grupta toplanabilir. Makromoleküllerin ve iyonların homeostazisi bitkilerin dehidrasyona karşı olan temel cevap mekanizmalarından birisidir. Ayrıca, homeostazi; su iletimi ve iyon dengesinin kontrolünde rol oynayan aquaporinlerin ve iyon taşıma sistemlerin aktivasyonu ve inaktivasyonunu kapsar. Bitkilerde strese karşı verilen cevaplardan bir diğeri düşük moleküler ağırlıklı, çözünen maddeler veya ozmolitler, ısı şoku (Heatshock) ve LEA proteinleri (geç embriyogenez bağımlı) gibi koruyucu moleküllerin sentezine dayanmaktadır. Bu moleküller hücre içerisinde ozmotik ayarlayıcı ve ozmoprotektan olarak görev alırlar. Stres koşulları altında ROS sentezi ve detoksifikasyonundan sorumlu enzimatik ve enzimatik olmayan antioksidanların oluşumu strese karşı verilen moleküler cevaplardan sonuncusudur. Günümüzde en popüler çalışma sahalarından biri haline gelmiş olan biyoteknolojide, bitkilerin stres koşullarına karşı adaptasyonu ve dirençliliğinin arttırılması öncelikle bitkilerde stres etkilerinin net anlaşılmasına bağlıdır. Bu açıdan stres molekülerine ilişkin kaynak ve çalışmaların arttırılması faydalı olacaktır.Plants encounter many stress factors which affect their growth and development throughout their lifecycles because of their sessile nature. These stress conditions which can be originated by biotic and abiotic factors can adversely affect the quantity and quality of the product with leading to physiological and biochemical damage to crops. Plants have molecular response mechanisms for protecting and reducing negative effects of stress factors and these mechanisms can be divided in three groups, including homeostasis of ions and macromolecules, synthesis of protective molecules and formation and detoxification of reactive oxygen species (ROS). Homeostasis of macromolecules and ions is one of the response mechanisms of plants against dehydration and contains activation and inactivation of aquaporins and ion transport systems which play a role for controlling of water transmission and ion balance. The other stress response of plants is based on synthesis protective molecules such as low molecular weighted soluble substances or osmolites, heat shock (HSP) and LEA (late embroyogenesis abundont proteins) proteins. These molecules are participate in cell as an osmotic regulator and osmoprotectan. The last molecular responses of plants is the generation of enzymatic and non-enzymatic antioxidants which are responsible for synthesis and detoxificaiton of ROS under stress condition. Today, in biotechnology which has become one of the most popular research area, improving the adaptation and resistance of plants against stress conditions is primarily depends on a clear understanding of the effects of stress in plants. In this respect, increasing the sources and studies of stress molecular biology would be useful

    AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups

    No full text
    The Anatolian region of modern-day Turkey is believed to have played an important role in the history of grapevine (Vitis vinifera L.) domestication and spread. Despite this, the rich grape germplasm of this region is virtually uncharacterized genetically. In this study, the amplified fragment length polymorphisms (AFLP)-based genetic relations of the grapevine accessions belonging to the 2 economically important Anatolian table grape varietal groups known as V. vinifera 'Misket' (Muscat) and V. vinifera 'Parmak' were studied. Thirteen AFLP primer combinations used in the analyses revealed a total of 1495 (35.5% polymorphic) and 1567 (34.6% polymorphic) DNA fragments for the 'Misket' and 'Parmak' varietal groups, respectively. The unweighted pair-group method with arthimetic averaging (UPGMA) cluster analysis and principal coordinate analysis (PCA) conducted on polymorphic AFLP markers showed that both varietal groups contain a number of synonymous (similar genotypes known by different names) as well as homonymous (genetically different genotypes known by the same name) accessions. Our results also showed that 6 of the Anatolian 'Misket' genotypes were genetically very similar to V. vinifera 'Muscat of Alexandria', implying that these genotypes might have played some role in the formation of this universally known grape cultivar. Finally, the close genetic similarities found here between 'Muscat of Alexandria' and V. vinifera 'Muscat of Hamburg' support the recent suggestion that 'Muscat of Hamburg' probably originated from 'Muscat of Alexandria' through spontaneous hybridizations. Overall, the results of this study have implications for not only preservation and use of the Anatolian grape germplasm, but also better understanding of the historical role that this region has played during the domestication of grapes
    corecore