95 research outputs found
Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator
We report measurement of the first carrier-envelope offset (CEO) frequency signal from a spectrally broadened ultrafast solid-state laser oscillator operating in the 1.5μm spectral region. The f-to-2f CEO frequency beat signal is 49 dB above the noise floor (100-kHz resolution bandwidth) and the free-running linewidth of 3.6 kHz is significantly better than typically obtained by ultrafast fiber laser systems. We used a SESAM mode-locked Er:Yb:glass laser generating 170-fs pulses at a 75MHz pulse repetition rate with 110-mW average power. It is pumped by one standard telecom-grade 980-nm diode consuming less than 1.5W of electrical power. Without any further pulse compression and amplification, a coherent octave-spanning frequency comb is generated in a polarization-maintaining highly-nonlinear fiber (PM-HNLF). The fiber length was optimized to yield a strong CEO frequency beat signal between the outer Raman soliton and the spectral peak of the dispersive wave within the supercontinuum. The polarization-maintaining property of the supercontinuum fiber was crucial; comparable octave-spanning supercontinua from two non-PM fibers showed higher intensity noise and poor coherence. Astable CEO-beat was observed even with pulse durations above 200fs. Achieving a strong CEO frequency signal from relatively long pulses with moderate power levels substantially relaxes the demands on the driving laser, which is particularly important for novel gigahertz diode-pumped solid-state and semiconductor laser
Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at10-100 GHz repetition rate
Stable ultrafast laser sources at multi-GHz repetition rates are important for various application areas, such as optical sampling, frequency comb metrology, or advanced high-speed return-to-zero telecom systems. We review SESAM-mode-locked Er,Yb:glass lasers operating in the 1.5μm spectral region at multi-GHz repetition rates, discussing the key improvements that have enabled increasing the repetition rate up to 100GHz. We also present further improved results with shorter pulse durations from a 100GHz Er,Yb:glass laser. With an improved SESAM design we achieved 1.1ps pulses with up to 30mW average output power. Moreover, we discuss for the first time the importance of beam quality deteriorations arising from frequency-degenerate higher order spatial modes in such laser
On the design of electrically pumped vertical-external-cavity surface-emitting lasers
Vertical-external-cavity surface-emitting lasers (VECSELs) yield an excellent beam quality in conjunction with a scalable output power. This paper presents a detailed numerical analysis of electrically pumped VECSEL (EP-VECSEL) structures. Electrical pumping is a key element for compact laser devices. We consider the optical loss, current confinement, and device resistance. The main focus of our investigation is on the achievement of an adequate radial carrier distribution for fundamental transverse mode operation. It will be shown that a trade off between the conflicting optical and electrical optimization has to be found and we derive an optimized design resulting in guidelines for the design of EP-VECSELs which are compatible with passive mode lockin
Vertical integration of ultrafast semiconductor lasers
Lasers generating short pulses - referred to as ultrafast lasers - enable many applications in science and technology. Numerous laboratory experiments have confirmed that ultrafast lasers can significantly increase telecommunication data rates [1], improve computer interconnects, and optically clock microprocessors [2, 3]. New applications in metrology [4], supercontinuum generation [5], and life sciences with two-photon microscopy [6] only work with ultrashort pulses but have relied on bulky and complex ultrafast solid-state lasers. Semiconductor lasers are ideally suited for mass production and widespread applications, because they are based on a wafer-scale technology with a high level of integration. Not surprisingly, the first lasers entering virtually every household were semiconductor lasers in compact disk players. Here we introduce a new concept and make the first feasibility demonstration of a new class of ultrafast semiconductor lasers which are power scalable, support both optical and electrical pumping and allow for wafer-scale fabrication. The laser beam propagates vertically (perpendicularly) through the epitaxial layer structure which has both gain and absorber layers integrated. In contrast to edge-emitters, these lasers have semiconductor layers that can be optimized separately by using different growth parameters and with no regrowth. This is especially important to integrate the gain and absorber layers, which require different quantum confinement. A saturable absorber is required for pulse generation and we optimized its parameters with a single self-assembled InAs quantum dot layer at low growth temperatures. We refer to this class of devices as modelocked integrated external-cavity surface emitting lasers (MIXSEL). Vertical integration supports a diffraction-limited circular output beam, transform-limited pulses, lower timing jitter, and synchronization to an external electronic clock. The pulse repetition rate scales from 1-GHz to 100-GHz by simply changing the laser cavity length. This result holds promise for semiconductor-based high-volume wafer-scale fabrication of compact, ultrafast laser
Modelocked quantum dot vertical external cavity surface emitting laser
We report the first successful modelocking of a vertical external cavity surface emitting laser (VECSEL) with a quantum dot (QD) gain region. The VECSEL has a total of 35 QD-layers with an emission wavelength of about 1060 nm. In SESAM modelocked operation, we obtain an average output power of 27.4 mW with 18-ps pulses at a repetition rate of 2.57 GHz. This QD-VECSEL is used as-grown on a 450 μm thick substrate, which limits the average output powe
High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation
Ultrafast thin disk laser oscillators achieve the highest average output powers and pulse energies of any mode-locked laser oscillator technology. The thin disk concept avoids thermal problems occurring in conventional high-power rod or slab lasers and enables high-power TEM00 operation with broadband gain materials. Stable and self-starting passive pulse formation is achieved with semiconductor saturable absorber mirrors (SESAMs). The key components of ultrafast thin disk lasers, such as gain material, SESAM, and dispersive cavity mirrors, are all used in reflection. This is an advantage for the generation of ultrashort pulses with excellent temporal, spectral, and spatial properties because the pulses are not affected by large nonlinearities in the oscillator. Output powers close to 100W and pulse energies above 10μJ are directly obtained without any additional amplification, which makes these lasers interesting for a growing number of industrial and scientific applications such as material processing or driving experiments in high-field science. Ultrafast thin disk lasers are based on a power-scalable concept, and substantially higher power levels appear feasible. However, both the highest power levels and pulse energies are currently only achieved with Yb:YAG as the gain material, which limits the gain bandwidth and therefore the achievable pulse duration to 700 to 800fs in efficient thin disk operation. Other Yb-doped gain materials exhibit a larger gain bandwidth and support shorter pulse durations. It is important to evaluate their suitability for power scaling in the thin disk laser geometry. In this paper, we review the development of ultrafast thin disk lasers with shorter pulse durations. We discuss the requirements on the gain materials and compare different Yb-doped host materials. The recently developed sesquioxide materials are particularly promising as they enabled the highest optical-to-optical efficiency (43%) and shortest pulse duration (227fs) ever achieved with a mode-locked thin disk lase
Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser
We present the first passively modelocked thin disk laser (TDL) with sub-100-fs pulse duration using the broadband sesquioxide gain material Yb:LuScO3 and an optimized SEmiconductor Saturable Absorber Mirror (SESAM). In this proof-of-principle experiment, we obtained 5.1W of average power at a repetition rate of 77.5MHz and a pulse duration of 96fs. We carefully explored and optimized the different parameters on the soliton pulse formation process for the generation of short pulses. In particular, SESAMs combining fast recovery time, high modulation depth and low nonsaturable losses proved crucial to achieve this result even though they are expected to only play a minor role in soliton modelocking. To our knowledge, these are the shortest pulses ever obtained with a modelocked TDL, reaching for the first time the sub-100-fs milestone. This result opens the door to sub-100-fs oscillators with substantially higher power levels in the near futur
A Kerr Polarization Controller
Kerr-effect-induced changes of the polarization state of light are well known in pulsed laser systems. An example is nonlinear polarization rotation, which is critical to the operation of many types of mode-locked lasers. Here, we demonstrate that the Kerr effect in a high-finesse Fabry-Pérot resonator can be utilized to control the polarization of a continuous wave laser. It is shown that a linearly-polarized input field is converted into a left- or right-circularly-polarized field, controlled via the optical power. The observations are explained by Kerr-nonlinearity induced symmetry breaking, which splits the resonance frequencies of degenerate modes with opposite polarization handedness in an otherwise symmetric resonator. The all-optical polarization control is demonstrated at threshold powers down to 7 mW. The physical principle of such Kerr effect-based polarization controllers is generic to high-Q Kerr-nonlinear resonators and could also be implemented in photonic integrated circuits. Beyond polarization control, the spontaneous symmetry breaking of polarization states could be used for polarization filters or highly sensitive polarization sensors when operated close to the symmetry-breaking point
Frequency comb metrology with an optical parametric oscillator
We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-μm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-μm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser
- …