545 research outputs found

    Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordConjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.This work was funded by the Villum Kann Rasmussen Foundation Center of Excellence CREAM (Center for Environmental and Agricultural Microbiology)

    In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina

    Full text link
    © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18. The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO 2 fixing pathways, likely a result of O 2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron

    Design and Synthesis of a Quintessential Self-Transmissible IncX1 Plasmid, pX1.0

    Get PDF
    DNA exchange in bacteria via conjugative plasmids is believed to be among the most important contributing factors to the rapid evolution- and diversification rates observed in bacterial species. The IncX1 plasmids are particularly interesting in relation to enteric bacteria, and typically carry genetic loads like antibiotic resistance genes and virulence factors. So far, however, a “pure” version of these molecular parasites, without genetic loads, has yet to be isolated from the environment. Here we report the construction of pX1.0, a fully synthesized IncX1 plasmid capable of horizontal transfer between different enteric bacteria. The designed pX1.0 sequence was derived from the consensus gene content of five IncX1 plasmids and three other, more divergent, members of the same phylogenetic group. The pX1.0 plasmid was shown to replicate stably in E. coli with a plasmid DNA per total DNA ratio corresponding to approximately 3–9 plasmids per chromosome depending on the growth phase of the host. Through conjugation, pX1.0 was able to self-transfer horizontally into an isogenic strain of E. coli as well as into two additional species belonging to the family Enterobacteriaceae. Our results demonstrate the immediate applicability of recent advances made within the field of synthetic biology for designing and constructing DNA systems, previously existing only in silica

    Entanglement of spin waves among four quantum memories

    Get PDF
    Quantum networks are composed of quantum nodes that interact coherently by way of quantum channels and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a `web' for connecting quantum processors for computation and communication, as well as a `simulator' for enabling investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum channels for distribution across the network. While such capabilities have been demonstrated for diverse bipartite systems (i.e., N=2 quantum systems), entangled states with N > 2 have heretofore not been achieved for quantum interconnects that coherently `clock' multipartite entanglement stored in quantum memories to quantum channels. Here, we demonstrate high-fidelity measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of atomic entanglement to four photonic quantum channels; and the characterization of the full quadripartite entanglement by way of quantum uncertainty relations. Our work thereby provides an important tool for the distribution of multipartite entanglement across quantum networks.Comment: 4 figure

    Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    Get PDF
    Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.Fil: Klumper, Uli. Technical University of Denmark; DinamarcaFil: Riber, Leise. Universidad de Copenhagen; DinamarcaFil: Dechesne, Arnaud. Technical University of Denmark; DinamarcaFil: Sannazzaro, Analía Inés. Universidad de Copenhagen; DinamarcaFil: Hansen, Lars H.. Universidad de Copenhagen; Dinamarca. Aarhus University. Roskilde; DinamarcaFil: Sørensen, Søren. Universidad de Copenhagen; DinamarcaFil: Smets, Barth F. Technical University of Denmark; Dinamarc

    Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. The data that support the findings of this study are available from the corresponding author upon reasonable request and in Source Data file. Genome sequences are available in the NCBI database under genome accession numbers VBRL00000000, VBRM00000000, VBRN00000000, VBRO00000000, VBRQ00000000 and VBRR00000000. Source data are provided with this paper.Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.Slovenian Research Agency (ARRS

    Why do physicians prescribe dialysis? A prospective questionnaire study

    Get PDF
    Funding Information: This study was supported by an unrestricted grant 14CECPDEU1001 from Baxter Healthcare International. Baxter Novum is the result of a grant from Baxter Healthcare Corporation to Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, to support research activities at Karolinska Institutet to promote the understanding and treatment of renal disease. Bengt Lindholm is employed by Baxter Healthcare Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter our adherence to PLOS ONE policies on sharing data and materials. Publisher Copyright: © 2017 Heaf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.Introduction.The incidence of unplanned dialysis initiation (DI) with consequent increased comorbidity, mortality and reduced modality choice remains high, but the optimal timing of dialysis initiation (DI) remains controversial, and there is a lack of studies of specific reasons for DI. We investigated why and when physicians prescribe dialysis and hypothesized that physician motivation for DI is an independent factor which may have clinical consequences. Methods In the Peridialysis study, an ongoing multicenter prospective study assessing the causes and timing of DI and consequences of unplanned dialysis, physicians in 11 hospitals were asked to describe their primary, secondary and further reasons for prescribing DI. The stated reasons for DI were analyzed in relation to clinical and biochemical data at DI, and characteristics of physicians. Results In 446 patients (median age 67 years; 38% females; diabetes 25.6%), DI was prescribed by 84 doctors who stated 23 different primary reasons for DI. The primary indication was clinical in 63% and biochemical in 37%; 23% started for life-threatening conditions. Reduced renal function accounted for only 19% of primary reasons for DI but was a primary or contributing reason in 69%. The eGFR at DI was 7.2 ±3.4 ml/min/1.73 m2, but varied according to comorbidity and cause of DI. Patients with cachexia, anorexia and pulmonary stasis (34% with heart failure) had the highest eGFR (8.2–9.8 ml/min/1.73 m2), and those with edema, “low GFR”, and acidosis, the lowest (4.6–6.1 ml/min/1.73 m2). Patients with multiple comorbidity including diabetes started at a high eGFR (8.7 ml/min/1.73 m2). Physician experience played a role in dialysis prescription. Non-specialists were more likely to prescribe dialysis for life-threatening conditions, while older and more experienced physicians were more likely to start dialysis for clinical reasons, and at a lower eGFR. Female doctors started dialysis at a higher eGFR than males (8.0 vs. 7.1 ml/min/1.73 m2). Conclusions DI was prescribed mainly based on clinical reasons in accordance with current recommendations while low renal function accounted for only 19% of primary reasons for DI. There are considerable differences in physicians´ stated motivations for DI, related to their age, clinical experience and interpretation of biochemical variables. These differences may be an independent factor in the clinical treatment of patients, with consequences for the risk of unplanned DI.publishersversionPeer reviewe

    Architecture for a large-scale ion-trap quantum computer

    Full text link
    Among the numerous types of architecture being explored for quantum computers are systems utilizing ion traps, in which quantum bits (qubits) are formed from the electronic states of trapped ions and coupled through the Coulomb interaction. Although the elementary requirements for quantum computation have been demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approach to large numbers of qubits. Therefore, recent efforts have been concentrated on using quantum communication to link a number of small ion-trap quantum systems. Developing the array-based approach, we show how to achieve massively parallel gate operation in a large-scale quantum computer, based on techniques already demonstrated for manipulating small quantum registers. The use of decoherence-free subspaces significantly reduces decoherence during ion transport, and removes the requirement of clock synchronization between the interaction regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62880/1/nature00784.pd

    TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    Get PDF
    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is one of four inhibitors of the matrix metalloproteinases, which are capable of degrading most components of the extracellular matrix. However, in recent years, TIMP-1 has been recognised as a multifunctional protein, playing a complex role in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional chemotherapy

    Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids

    Get PDF
    Khat (Catha edulis Forsk.) is a flowering perennial shrub cultivated for its neurostimulant properties resulting mainly from the occurrence of (S)-cathinone in young leaves. The biosynthesis of (S)-cathinone and the related phenylpropylamino alkaloids (1S,2S)-cathine and (1R,2S)-norephedrine is not well characterized in plants. We prepared a cDNA library from young khat leaves and sequenced 4,896 random clones, generating an expressed sequence tag (EST) library of 3,293 unigenes. Putative functions were assigned to > 98% of the ESTs, providing a key resource for gene discovery. Candidates potentially involved at various stages of phenylpropylamino alkaloid biosynthesis from L-phenylalanine to (1S,2S)-cathine were identified
    corecore