1,444 research outputs found

    Efficient atomic clocks operated with several atomic ensembles

    Get PDF
    Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this article we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as (αN)m/2(\alpha N)^{-m/2} with NN being the number of atoms in each of the mm ensembles and α\alpha is a constant depending on the protocol being used to lock the LOComment: 10 pages, 8 figure

    Elementary test for non-classicality based on measurements of position and momentum

    Full text link
    We generalise a non-classicality test described by Kot et al. [Phys. Rev. Lett. 108, 233601 (2010)], which can be used to rule out any classical description of a physical system. The test is based on measurements of quadrature operators and works by proving a contradiction with the classical description in terms of a probability distribution in phase space. As opposed to the previous work, we generalise the test to include states without rotational symmetry in phase space. Furthermore, we compare the performance of the non-classicality test with classical tomography methods based on the inverse Radon transform, which can also be used to establish the quantum nature of a physical system. In particular, we consider a non-classicality test based on the so-called filtered back-projection formula. We show that the general non-classicality test is conceptually simpler, requires less assumptions on the system and is statistically more reliable than the tests based on the filtered back-projection formula. As a specific example, we derive the optimal test for a quadrature squeezed single photon state and show that the efficiency of the test does not change with the degree of squeezing

    Fish communities in shallow coastal waters - a study of effects of season and bottom substrate

    Get PDF
    Fish communities in the outer part of Malangen fjord, Troms county were studied to identify seasonal and spatial variation. The fish species compositions differed between seasons and at the four different locations. Cod (Gadus morhua L.) dominated the trammel net catches at all months except in March, in which plaice and other flatfishes were the most numerous. Species richness and diversity were significantly positively correlated with substrate evenness, and the species richness was highest in October and lowest in March. Cod displayed a higher length at age compared with fjord populations, but lower maximum length (L∞). Plaice (Pleuronectes platessa L.) had a low annual mortality rate, and the von Bertalanffy growth coefficient (K) were higher than North Sea plaice populations. Only immature halibut (Hippoglossus hippoglossus L.) were observed, and the three locations where halibut were present are suggested to be nursery grounds for this species. Most of the flatfishes were positively associated with sand and pebble habitats whereas cod were significantly negatively correlated with sand coverage but positively correlated with high algae coverage. The present study highlights the importance of including shallow water studies for both coastal and fisheries management

    Near Heisenberg limited atomic clocks in the presence of decoherence

    Get PDF
    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near Heisenberg limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence.Comment: 13 pages, 9 figures. Note that new reference: Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Phys. Rev. A 84, 012103 (2011) is adde

    One- and two-axis squeezing of atomic ensembles in optical cavities

    Get PDF
    The strong light-matter coupling attainable in optical cavities enables the generation of highly squeezed states of atomic ensembles. It was shown in [Phys. Rev. A 66, 022314 (2002)] how an effective one-axis twisting Hamiltonian can be realized in a cavity setup. Here, we extend this work and show how an effective two-axis twisting Hamiltonian can be realized in a similar cavity setup. We compare the two schemes in order to characterize their advantages. In the absence of decoherence, the two-axis Hamiltonian leads to more squeezing than the one-axis Hamiltonian. If limited by decoherence from spontaneous emission and cavity decay, we find roughly the same level of squeezing for the two schemes scaling as (NC)^(1/2) where C is the single atom cooperativity and N is the total number of atoms. When compared to an ideal squeezing operation, we find that for specific initial states, a dissipative version of the one-axis scheme attains higher fidelity than the unitary one-axis scheme or the two-axis scheme. However, the unitary one-axis and two-axis schemes perform better for general initial states.Comment: 13 pages, 6 figure

    Draft genome sequence of <i>Burkholderia sordidicola</i> S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic

    Get PDF
    Burkholderia species are key players in the accumulation of carbon from cellulose decomposition in coniferous forest ecosystems. We report here the draft genome of Burkholderia sordidicola strain S170, containing features associated with known genes involved in plant growth promotion, the biological control of plant diseases, and green remediation technologies

    Photonic Controlled-Phase Gates Through Rydberg Blockade in Optical Cavities

    Full text link
    We propose a novel scheme for high fidelity photonic controlled phase gates using Rydberg blockade in an ensemble of atoms in an optical cavity. The gate operation is obtained by first storing a photonic pulse in the ensemble and then scattering a second pulse from the cavity, resulting in a phase change depending on whether the first pulse contained a single photon. We show that the combination of Rydberg blockade and optical cavities effectively enhances the optical non-linearity created by the strong Rydberg interaction and thereby reduces the requirements for photonic quantum gates. The resulting gate can be implemented with cavities of moderate finesse which allows for highly efficient processing of quantum information encoded in photons. As a particular example of this, we show how the gate can be employed to increase the communication rate of quantum repeaters based on atomic ensembles.Comment: main manuscript 5 pages with 11 pages of supplementary informatio

    Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from <em>Klebsiella pneumoniae</em>

    Get PDF
    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer

    Visualization of the Multichannel Seismocardiogram

    Get PDF
    corecore