55 research outputs found

    Injection molded self-cleaning surfaces

    Get PDF

    An Arctic sea ice spring bloom driven and dominated by Dinoflagellates - a harbinger of the future sea ice?

    Get PDF
    The sea ice spring bloom is crucial for sustaining Arctic marine food webs, with sea ice algae serving as primary carbon sources for higher trophic levels. Despite the prevailing dominance of diatom species in sea ice spring blooms, our study highlights a notable deviation, showcasing a bloom driven by dinoflagellates. Through field sampling of first-year sea ice cores and subsequent analysis of physical and biogeochemical parameters, combined with amplicon sequencing of the 18S rRNA gene, we investigated the occurrence and implications of this significant dinoflagellate bloom, with a particular focus on Polarella glacialis. Our findings reveal that high irradiances at the top of the ice core, coupled with elevated nutrient availability and warm ice conditions, are key drivers of this phenomenon, as elucidated by redundancy analysis. Moreover, our results suggest a potential climate-driven decline in snow cover on sea ice, increased open leads, and thinner sea ice, which may favor the proliferation of dinoflagellates over diatoms. This alternative dinoflagellate-dominated bloom could have profound ecological consequences, given the enriched omega-3 fatty acid content of dinoflagellates, thereby influencing energy transfer within the Arctic marine food web. Furthermore, our study identifies the presence of not only Polarella glacialis but also Chytridinium, an ectoparasite on copepod eggs, and the green algae Ulothrix in relatively high abundances within the sea ice. These findings shed light on the intricate interplay between environmental factors and microbial community dynamics within Arctic sea ice ecosystems

    Geographical and ecological analyses of multiple myeloma in Denmark:Identification of potential hotspot areas and impact of urbanisation

    Get PDF
    BACKGROUND: The aetiology of multiple myeloma (MM) is unknown but various environmental exposures are suspected as risk factors. We present the first paper analysing the geographical distribution of MM in Denmark at the municipal level to investigate variations that could be explained by environmental exposures.METHODS: Patients diagnosed with MM in Denmark during 2005-2020 were identified from nationwide registries and grouped into the 98 Danish municipalities based on residence. The age- and sex-standardised incidence rate (SIR) of each municipality was compared to the national incidence in a funnel plot with 95% control limits. Differences in SIRs of rural, suburban, and urban areas were evaluated with incidence rate ratios.RESULTS: In total, 5243 MM patients were included. Overall, we found a heterogeneous geographical distribution of MM and a potential hotspot in southern Denmark. This hotspot contains three municipalities with SIRs above the 95% control limit assuming considerably higher rate of MM compared to the national incidence rate. A significant higher SIR was found in rural areas compared to urban areas.CONCLUSION: The geographical distribution of MM in Denmark indicates that the risk of developing MM depends on place of residence probably due to environmental factors.</p
    • …
    corecore