78 research outputs found

    Singlet state encoded magnetic resonance (SISTEM) spectroscopy

    Full text link
    Magnetic resonance spectroscopy (MRS) allows the analysis of biochemical processes non invasively and in vivo. Still, its application in clinical diagnostics is rare. Routine MRS is limited to spatial, chemical and temporal resolutions of cubic centimetres, mM and minutes. In fact, the signal of many metabolites is strong enough for detection, but the resonances significantly overlap, exacerbating identification and quantification. In addition, the signals of water and lipids are much stronger and dominate the entire spectrum. To suppress the background and isolate selected signals, usually, relaxation times, J-coupling and chemical shifts are used. Here, we propose methods to isolate the signals of selected molecular groups within endogenous metabolites by using long-lived spin states (LLS). We exemplify the method by preparing the LLSs of coupled protons in the endogenous molecules N-acetyl-L-aspartic acid (NAA). First, we store polarization in long-lived, double spin states and then apply saturation pulses and double quantum filters to suppress background signals. We show that LLS can be used to selectively prepare and measure the signals of chosen metabolites or drugs in the presence of water, inhomogeneous field and highly concentrated fatty solutions. The pH measurement presented here is one of the possible applications.Comment: 15 pages, 5 figures and supporting material

    A Paramagnetic NMR Spectroscopy Toolbox for the Characterisation of Paramagnetic/Spin-Crossover Coordination Complexes and Metal-Organic Cages

    Get PDF
    The large paramagnetic shifts and short relaxation times resulting from the presence of a paramagnetic centre complicate NMR data acquisition and interpretation in solution. As a result, NMR analysis of paramagnetic complexes is limited in comparison to diamagnetic compounds and often relies on theoretical models. We report a toolbox of 1D (1H, proton-coupled 13C, selective 1H-decoupling 13C, steady-state NOE) and 2D (COSY, NOESY, HMQC) paramagnetic NMR methods that enables unprecedented structural characterisation and in some cases, provides more structural information than would be observable for a diamagnetic analogue. We demonstrate the toolbox's broad versatility for fields from coordination chemistry and spin-crossover complexes to supramolecular chemistry through the characterisation of CoII and high-spin FeII mononuclear complexes as well as a Co4L6 cage

    Adenovirus RIDα regulates endosome maturation by mimicking GTP-Rab7

    Get PDF
    The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are guanosine triphosphate (GTP)–Rab7 effectors that instigate minus end–directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation α (RIDα), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135–144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299–8306). RIDα localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDα compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu2+ binding to RIDα residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDα–RILP interaction and RIDα activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDα activity during an acute adenovirus infection. We conclude that RIDα coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo

    Evaluation of High-Resolution Mass Spectrometry for the Quantitative Analysis of Mycotoxins in Complex Feed Matrices

    Get PDF
    The selective and sensitive analysis of mycotoxins in highly complex feed matrices is a great challenge. In this study, the suitability of OrbitrapTM-based high-resolution mass spectrometry (HRMS) for routine mycotoxin analysis in complex feeds was demonstrated by the successful validation of a full MS/data-dependent MS/MS acquisition method for the quantitative determination of eight Fusarium mycotoxins in forage maize and maize silage according to the Commission Decision 2002/657/EC. The required resolving power for accurate mass assignments (<5 ppm) was determined as 35,000 full width at half maximum (FWHM) and 70,000 FWHM for forage maize and maize silage, respectively. The recovery (RA), intra-day precision (RSDr), and inter-day precision (RSDR) of measurements were in the range of 94 to 108%, 2 to 16%, and 2 to 12%, whereas the decision limit (CCα) and the detection capability (CCβ) varied from 11 to 88 µg/kg and 20 to 141 µg/kg, respectively. A set of naturally contaminated forage maize and maize silage samples collected in northern Germany in 2017 was analyzed to confirm the applicability of the HRMS method to real samples. At least four Fusarium mycotoxins were quantified in each sample, highlighting the frequent co-occurrence of mycotoxins in feed

    Cytotoxic constituents and a new hydroxycinnamic acid derivative from Leontodon saxatilis (Asteraceae, Cichorieae)

    Get PDF
    In our ongoing research for the discovery of new constituents with antimyeloma activity, we investigated 15 compounds present in the aerial parts of Leontodon saxatilis for their cytotoxic potential against NCI-H929, U266, and OPM2 cell lines. One of the isolated compounds displayed a new natural product and was identified as 5-feruloyl-2α-hydroxyquinic acid after LC-MS and NMR experiments. Of the remaining compounds, cichoric acid and three flavone glycosides, apigenin 4'-O-β-d-glucoside, luteolin 7-O-β-d-glucoside and luteolin 4'-O-β-d-glucoside, showed moderate cytotoxic activity, whereas the effects of two aglyones apigenin and luteolin were more pronounced. Though the cytotoxic potential of the two aglycones (against other cell lines) was reported in various studies, our work moreover showed that cooccurrence of these two compounds with similar components of lower activity led to comparable results and at the same time minimized the damage of healthy fibroblast cells. Thus, our work could be a starting point for additional studies on the synergistic effect of similar components against myeloma cell lines

    Bioactive Abietane-Type Diterpenoid Glycosides from Leaves of Clerodendrum infortunatum (Lamiaceae)

    Get PDF
    In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6'-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM)

    Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars

    Get PDF
    Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms
    • …
    corecore