385 research outputs found
The formation of host–guest complexes between surfactants and cyclodextrins
Cyclodextrins are able to act as host molecules in supramolecular chemistry with applications ranging from pharmaceutics to detergency. Among guest molecules surfactants play an important role with both fundamental and practical applications. The formation of cyclodextrin/surfactant host–guest compounds leads to an increase in the critical micelle concentration and in the solubility of surfactants. The possibility of changing the balance between several intermolecular forces, and thus allowing the study of, e.g., dehydration and steric hindrance effects upon association, makes surfactants ideal guest molecules for fundamental studies. Therefore, these systems allow for obtaining a deep insight into the host–guest association mechanism. In this paper, we review the influence on the thermodynamic properties of CD–surfactant association by highlighting the effect of different surfactant architectures (single tail, double-tailed, gemini and bolaform), with special emphasis on cationic surfactants. This is complemented with an assessment of the most common analytical techniques used to follow the association process. The applied methods for computation of the association stoichiometry and stability constants are also reviewed and discussed; this is an important point since there are significant discrepancies and scattered data for similar systems in the literature.
In general, the surfactant–cyclodextrin association is treated without reference to the kinetics of the process. However, there are several examples where the kinetics of the process can be investigated, in particular those where volumes of the CD cavity and surfactant (either the tail or in special cases the head group) are similar in magnitude. This will also be critically reviewed
What is the future potential for imports of combustible municipal waste to countries with extensive district heating hetworks? - A case study of Denmark
In Europe, landfilling is the most widely used method for managing municipal solid waste. By contrast, the northern European waste market is characterized by high capacities from energy recovery plants, mostly incineration in cogeneration facilities. In Denmark, there is an overcapacity of incineration plants and this study aims to analyse if import of waste is beneficial during an interim period to divert landfilling or if it might be profitable to invest in overcapacity in the long-term in those countries where heat from incineration can be recovered. The energy and waste management system are described through linking of mathematical models, taking a holistic approach. In the short-term it pays off to import waste, avoiding landfilling; however, in the longer-term, benefits from waste trading will depend on the price of heat markets
High-resolution 3D X-ray imaging of intracranial nitinol stents
Introduction To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Methods Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast–noise–sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. Results We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel–titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). Conclusion By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations
PFAS in the Drinking Water Source: Analysis of the Contamination Levels, Origin and Emission Rates
Groundwater contamination caused by the use of the aqueous film-forming foam (AFFF) containing per- and polyfluoroalkyl substances (PFAS) was investigated in southern Sweden. SPFAS concentrations in groundwater ranged between 20 and 20,000 ng L????1; PFAS composition was primarily represented by PFOS and PFHxS. The PFAS chain length was suggested to have an impact on the contaminant distribution and transport in the groundwater. PFAS profiling showed that the use of PFSAs- and PFCAs/FTSAs-based PFAS-AFFF can be a contributor to PFAS contamination of the drinking water source (groundwater). PFAS emission was connected to PFAS-AFFF use during the fire-training and fire-fighting equipment tests at the studied location. PFAS emission per individual fire training was (semi-quantitatively) estimated as [1.4 < 11.5 5.7 < 43.7 kg] (n = 20,000). The annual emission estimates varied as [11 < 401 233 < 1125 kg yr????1] (n = 1005) considering possible [2 < 35 20 < 96] individual fire-training sessions per year
The unexplained success of stentplasty vasospasm treatment
Background
Cerebral vasospasm (CVS) following subarachnoid hemorrhage occurs in up to 70% of patients. Recently, stents have been used to successfully treat CVS. This implies that the force required to expand spastic vessels and resolve vasospasm is lower than previously thought.
Objective
We develop a mechanistic model of the spastic arterial wall to provide insight into CVS and predict the forces required to treat it.
Material and Methods
The arterial wall is modelled as a cylindrical membrane using a constrained mixture theory that accounts for the mechanical roles of elastin, collagen and vascular smooth muscle cells (VSMC). We model the pressure diameter curve prior to CVS and predict how it changes following CVS. We propose a stretch-based damage criterion for VSMC and evaluate if several commercially available stents are able to resolve vasospasm.
Results
The model predicts that dilatation of VSMCs beyond a threshold of mechanical failure is sufficient to resolve CVS without damage to the underlying extracellular matrix. Consistent with recent clinical observations, our model predicts that existing stents have the potential to provide sufficient outward force to successfully treat CVS and that success will be dependent on an appropriate match between stent and vessel.
Conclusion
Mathematical models of CVS can provide insights into biological mechanisms and explore treatment approaches. Improved understanding of the underlying mechanistic processes governing CVS and its mechanical treatment may assist in the development of dedicated stents
eCLIPs bifurcation remodeling system for treatment of wide neck bifurcation aneurysms with extremely low dome-to-neck and aspect ratios: a multicenter experience
In our case series, 24 patients treated at 12 international centers were taken from a larger prospective voluntary post-marketing registry of 65 patients treated with the eCLIPs device and coiling. Those who had WNBAs at either the carotid or basilar terminus with a DTN ratio Wide necked bifurcation aneurysms (WNBA) are among the most difficult aneurysms to treat. Very low dome-to-neck (DTN) and aspect ratios provide an even greater challenge in the management of WNBAs. We present the safety and efficacy profile for endovascular clip system (eCLIPs) device in the treatment of this subset of WNBAs with very unfavorable morphologies.Our series of patients with aneurysms having adverse DTN and aspect ratios demonstrated that the eCLIPs device has a safety and efficacy profile comparable with currently available devices in the treatment of WNBAs.The eCLIPs device was successfully deployed in 23 cases (96%). One patient (4.2%) died due to guidewire perforation distal to the implant site. No other complications were documented. After a mean follow-up of 15.8 months (range 3-40 months), good radiologic outcomes (modified Raymond-Roy classification (MRRC) scores of 1 or 2) were documented in 20 of 21 patients (95%) with follow-up data. The lone patient with an MRRC score of 3 showed coiled compaction after incomplete neck coverage with the device.</div
- …