19 research outputs found

    Operationella resultat efter en private equity-backad LBO

    Get PDF
    Syftet med studien är att undersöka om det föreligger någon skillnad i operationell verksamhet mellan företag som genomgått en Private Equity sponsrad leveraged buyout och deras jämförelsegrupp som inte genomgått en liknande förändring i deras kapitalstruktur. Studien kunde inte påvisa någon skillnad på den operationella verksamheten hos företag som genomgått en LBO och dess jämförelsegrup

    Massively Extended Modular Monitoring and a Second Life for Upper Stages

    Get PDF
    Launching science and technology experiments to space is expensive. Although commercial spaceflight has resulted in a drop of prices, the cost for a launch is still significant. However, most of theweight that is needed to conduct experiments in space belongs to the spacecraft’s bus and it is responsiblefor power distribution, thermal management, orbital control and communications. An upper stage, on the other hand, includes all the necessary subsystems andhas to be launched in any case. Many upper stages (e.g. ARIANE5) will even stay in orbit for severalyears after their nominal mission with all their subsystems intact but passivated.We proposea compact system based on a protective container and high-performance Commercial-off-the-Shelf (COTS) hardwarethat allows cost-efficient launching oftechnology experiments by reusing the launcher’s upper stage and its subsystems. Addingacquisition channels for various sensors gives the launch provider the ability to exploitthe computational power of the COTS hardwareduring the nominal mission. In contrast to existing systems,intelligent and mission-dependent data selection and compression can beapplied to the sensor data.In this paper, we demonstrate the implementation and qualification of a payload bussystem based on COTScomponentsthat is minimallyinvasive to the launcher(ARIANE5)and its nominal missionwhile offering computational power to both the launch provider and a potential payloaduser. The reliability of the COTS-based system is improvedby radiation hardening techniques and software-based self-test detecting and counteracting faults during the mission

    Pathogenic Neisseria Hitchhike on the Uropod of Human Neutrophils

    Get PDF
    Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer

    Specialist laboratory networks as preparedness and response tool - The emerging viral diseases-expert laboratory network and the chikungunya outbreak, Thailand, 2019

    Get PDF
    We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems

    Modelling and simulation of Stirling engine for micro-cogeneration

    No full text
    Micro-cogeneration, specifically the simultaneous generation of thermal and electrical energy in residential buildings below 10 kWe provides an attractive option to reduce the environmental burden. In particular Stirling engines, originally invented in the year 1816, are emerging on the market to challenge conventional oil- or gas-powered heating systems. Characteristic strengths of external combustion engines are their high energy efficiency, low emissions, fuel flexibility, and operation with low noise and vibration. However, viable operation regarding primary energy demand, C02 emissions, and economic costs requires a carefully optimised operational strategy that is sensitive to the energy mix, building type, and climate. A whole-building-oriented simulation model is typically needed to discover the most energy-efficient system topologies. In this work the IDA-ICE building simulation program is employed to assess a Stirling engine micro-CHP device following the model specifications of IEA/ECBCS Annex 42. The simulation routine implemented, which has been validated through inter-program comparison, accounts for the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns. The study contributes to the improvements obtained by adaptation to hourly changes in the energy generation mix and the utilisation of thermal exhaust through heat recovery. The results suggest that a Stirling engine for micro-cogeneration can most viably be operated in a cold climate together with a fossil fuel-based energy mix. However, the attractiveness of a micro-CHP plant can only be preserved with efficient exhaust gas heat recovery. With the aid of optimally chosen operational strategies, exhaust gas heat recovery, and relevant thermal storage, the micro-cogeneration system generates savings of 3 - 5 % in primary energy consumption and C02 emissions. The configuration investigated is, moreover capable of creating annual operational savings for any combination of fuels and electricity prices between 0.05 euros/kWh and 0.15 euros/kWh. Financially, a Stirling engine for micro-cogeneration can most viably compete against electric and oil-powered furnaces for hydronic heating systems. The results are not yet able to be generalised for buildings in warmer climates due to the increased imbalance between the electrical and thermal energy demand

    Exploring the bacterial nano-universe

    No full text
    Since the days of the first acknowledged microscopist, Antonie van Leeuwenhoek, the 'animalcules', that is, bacteria and other microbes have been subject to increasingly detailed visualization. With the currently most sophisticated molecular imaging method; cryo electron tomography (Cryo-ET), we are reaching the milestone of being able to image an entire organism in a single dataset at nanometer resolution. Cryo-ET will enable the next revolution in our understanding of bacterial cells, their ultra-structure and intricate molecular nanomachines. Here, we highlight recent research discoveries based on constantly progressing technology developments. We discuss advantages and challenges of using Cryo-ET to visualize spatial structure of microorganisms and macromolecular complexes in their native environment

    Assembly mechanisms of the bacterial cytoskeletal protein FilP

    No full text
    Despite low-sequence homology, the intermediate filament (IF)–like protein FilP from Streptomyces coelicolor displays structural and biochemical similarities to the metazoan nuclear IF lamin. FilP, like IF proteins, is composed of central coiled-coil domains interrupted by short linkers and flanked by head and tail domains. FilP polymerizes into repetitive filament bundles with paracrystalline properties. However, the cations Na+ and K+ are found to induce the formation of a FilP hexagonal meshwork with the same 60-nm repetitive unit as the filaments. Studies of polymerization kinetics, in combination with EM techniques, enabled visualization of the basic building block — a transiently soluble rod-shaped FilP molecule—and its assembly into protofilaments and filament bundles. Cryoelectron tomography provided a 3D view of the FilP bundle structure and an original assembly model of an IF-like protein of prokaryotic origin, thereby enabling a comparison with the assembly of metazoan IF

    Affinity to cellulose is a shared property among coiled-coil domains of intermediate filaments and prokaryotic intermediate filament-like proteins

    No full text
    Coiled-coil domains of intermediate filaments (IF) and prokaryotic IF-like proteins enable oligomerisation and filamentation, and no additional function is ascribed to these coiled-coil domains. However, an IF-like protein from Streptomyces reticuli was reported to display cellulose affinity. We demonstrate that cellulose affinity is an intrinsic property of the IF-like proteins FilP and Scy and the coiled-coil protein DivIVA from the genus Streptomyces. Furthermore, IF-like proteins and DivIVA from other prokaryotic species and metazoan IF display cellulose affinity despite having little sequence homology. Cellulose affinity-based purification is utilised to isolate native FilP protein from the whole cell lysate of S. coelicolor. Moreover, cellulose affinity allowed for the isolation of IF and IF-like protein from the whole cell lysate of C. crescentus and a mouse macrophage cell line. The binding to cellulose is mediated by certain combinations of coiled-coil domains, as demornstrated for FilP and lamin. Fusions of target proteins to cellulose-binding coiled-coil domains allowed for cellulose-based protein purification. The data presented show that cellulose affinity is a novel function of certain coiled-coil domains of IF and IF-like proteins from evolutionary diverse species
    corecore