6 research outputs found

    Electronic Band Dispersion of Graphene Nanoribbons via Fourier-Transformed Scanning Tunneling Spectroscopy

    Full text link
    Atomically precise armchair graphene nanoribbons of width N=7N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). The analysis of energy-dependent standing wave patterns of finite length ribbons allows, by Fourier transformation, the direct extraction of the dispersion relation of frontier electronic states. Aided by density functional theory calculations, we assign the states to the valence band, the conduction band and the next empty band of 7-AGNRs, determine effective masses of 0.42±0.08 me0.42\pm 0.08\,m_e, 0.40±0.18 me0.40\pm 0.18\,m_e and 0.20±0.03 me0.20\pm 0.03\,m_e, respectively, and a band gap of 2.37±0.062.37\pm 0.06 eV.Comment: 20 pages, 7 figure

    Electronic Properties of Atomically Precise Graphene Nanoribbons

    Full text link

    Resolving Atomic Connectivity in Graphene Nanostructure Junctions

    No full text
    We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry

    Exciton-dominated optical response of ultra-narrow graphene nanoribbons

    Get PDF
    Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2\u2009eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths
    corecore