3 research outputs found

    Reactivation of latent bovine herpesvirus type 5 in cattle with polioencephalomalacia induced by ammonium sulphate

    No full text
    In the state Mato Grosso do Sul, Brazil, outbreaks of meningoencephalitis by BoHV-5 and polioencephalomalacia (PEM) display similar epidemiological features, suggesting that meningoencephalitis may be associated with reactivation of a latent BoHV-5 infection, during the development of PEM. To test this hypothesis, four 7-8 months old steers negative for BoHV-5 antibodies were inoculated intranasally with BoHV-5 and received amprolium from day 35 to day 105 after inoculation. Because PEM was not produced during this period, ammonium sulphate was given from day 114 to day 180 after inoculation. Two uninfected control steers received amprolium and ammonium sulphate for the same periods. All inoculated cattle developed antibodies against BoHV-5 after inoculation and the virus was isolated from nasal swabs, indicating that they were infected. Two inoculated steers had clinical signs of PEM after 118 and 146 days after virus inoculation. One was euthanized after a clinical manifestation period of seven days and had severe lesions of PEM and meningoencephalitis. BoHV-5 was isolated from the central nervous system of this animal. The other animal recovered but continued to manifest chronic signs of PEM and was euthanatized. On histological examination, the cerebral cortex, caudate nucleus and thalamus had multifocal areas of malacia and mild meningoencephalitis of the cortex. BoHV-5 was not isolated from the brain. One uninfected control steer had signs of neurological disease on day 158 and had lesions of PEM without meningoencephalitis at necropsy. The simultaneous production of PEM and diffuse meningoencephalitis, with isolation of BoHV-5, in one steer treated with ammonium sulphate, 118 days after BoHV-5 inoculation, suggests that latent BoHV-5 was reactivated in this animal submitted to experimental induction of PEM

    Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines

    Get PDF
    Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity
    corecore