40 research outputs found
Identification of potential therapeutic targets in prostate cancer through a cross-species approach.
Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence
Doxazosin reduces cell proliferation and increases collagen fibers in rat prostatic lobes
We investigated the effects of doxazosin (Dox), an alpha-adrenoceptor antagonist used clinically for the treatment of benign prostatic hyperplasia (BPH), on the rat prostatic complex by assessing structural parameters, collagen fiber content, cell proliferation, and apoptosis. Adult Wistar rats were treated with Dox (25 mg/kg per day), and the ventral (VP), dorsolateral, and anterior prostate (AP) regions of the prostate complex were excised at 3, 7, and 30 days after treatment. At 24 h before being killed, the rats were injected once with 5-bromodeoxyuridine (BrdU; thymidine analog) to label mitotically active cells. The prostates were weighed and processed for histochemistry, morphometry-stereology, immunohistochemistry for BrdU, Western blotting for proliferating cell nuclear antigen (PCNA), and the TUNEL reaction for apoptosis. Dox-treated prostate lobes at day 3 presented increased weight, an enlarged ductal lumen, low cubical epithelial cells, reduced epithelial folds, and stretched smooth muscle cells. However, at day 30, the prostates exhibited a weight reduction of âŒ20% and an increased area of collagen and reticular fibers in the stromal space. Dox also reduced epithelial cell proliferation and increased apoptosis in the three prostatic lobes. Western blotting for PCNA confirmed the reduction of cell proliferation by Dox, with the AP and VP being more affected than the dorsal prostate. Thus, Dox treatment alters epithelial cell behavior and prostatic tissue mechanical demand, inducing tissue remodeling in which collagen fibers assume a major role. © 2007 Springer-Verlag
Tissue inhibitor of metalloproteinase-2 (TIMP-2) location in the ventral, lateral, dorsal and anterior lobes of rat prostate by immunohistochemistry
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a major role in extracellular matrix component degradation in several normal and abnormal tissue situations; they are also found in human seminal plasma. MMPs have been found in rat prostate secretions and are nearly lobe specific in expression pattern. The aim of this study was to evaluate whether TIMP-2, like other semen components, is expressed differently from different rat prostatic lobes. Immunohistochemical staining was performed in both young and adult rat ventral (VP), lateral (LP), dorsal (DP), and anterior (AP) prostatic lobes and confirmed by western blotting. TIMP-2 expression was found in the epithelial cells in the following sequence: LP > AP > DP > VP, in both young and adult rats. In this study, 100% of adult LP presented histological signs of prostatitis, where TIMP-2 immunostaining was positive in normal epithelium even with intraluminal neutrophils, but was reduced or absent in the epithelium with intraepithelial leukocytes or with periductal stroma disorganization associated with mononuclear cell infiltration. However, TIMP-2 expression in LP was not induced by prostatitis, since younger rat LPs were also strongly TIMP-2 positive. The distal and intermediate VP regions were TIMP-2 negative, but the proximal regions were strongly stained. Western blotting results confirmed the high TIMP-2 expression in the LP lobe. Thus, TIMP-2 is expressed differently between the prostatic lobes and is another nearly lobe-specific protein, which plays a role in the regulation of MMP activity in seminal plasma and glandular homeostasis. TIMP-2 is also another regional ductal variation of VP. Further studies should address whether TIMP-2 expression is related to the highest incidence of rat LP prostatitis and adenocarcinoma. © 2006 International Federation for Cell Biology
Identification, Content, And Distribution Of Type Vi Collagen In Bovine Tendons.
Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.325315-2
Fibrosis-related Gene Expression In The Prostate Is Modulated By Doxazosin Treatment.
To gain new insights into the molecular mechanisms of action of doxazosin, we investigated the prostatic stroma ultrastructure and the expression of genes involved with fibrosis, such as collagen type I and III (COL1A1 and COL3A1, respectively) and TGF-beta 1, in the rat ventral prostate. Adult Wistar rats were treated with doxazosin (25mg/kg/day), and the ventral prostates were excised at 7 and 30days after treatment. Untreated rats were controls. Ventral prostates were subjected to ultrastructural, immunohistochemical, biochemical and molecular analyses. Doxazosin-treated prostates showed thickened bundles of collagen fibrils, activated fibroblasts, enlarged neurotransmitter vesicles and increased tissue immunostaining for collagen type I and type III when compared to untreated prostates. After 7 and 30days of doxazosin treatment mRNA expression of COL1A1 and COL3A1 was significantly increased and reduced, respectively, compared to the control group. TGF-beta 1 mRNA and protein levels were increased after 7days of doxazosin treatment, whereas only mRNA levels remained increased after 30days of treatment. Our data suggest that relaxation of smooth muscle cells by alpha-blockers interferes with the mechanical dynamics of the prostatic stroma extracellular matrix components, generating a pro-fibrotic effect probably via the TGF-beta 1 signaling pathway. Long term treatment with doxazosin may also lead to a reduced turnover of extracellular matrix components. Our results add to a better understanding of the molecular mechanisms behind the effects of alpha-blockade on prostatic histoarchitecture and the response to treatment for benign prostatic hyperplasia.911281-
Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis
AbstractMatrix metalloproteinases (MMPs) are zinc (Zn2+) and calcium (Ca2+) dependant endopeptidases, capable of degradation of numerous components of the extracellular matrix. Cadmium (Cd2+) is a well known environmental contaminant which could impair the activity of MMPs. In this sense, this study was conducted to evaluate if Cd2+ intake inhibits these endopeptidases activities at the rat prostate and testicles and if it directly inhibits the activity of MMP2 and MMP9 at gelatinolytic assays when present in the incubation buffer. To investigate this hypothesis, Wistar rats (5 weeks old), were given tap water (untreated, n = 9), or 15 ppm CdCl2 diluted in drinking water, during 10 weeks (n = 9) and 20 weeks (n = 9). The animals were euthanized and their ventral prostate, dorsal prostate, and testicles were removed. These tissue samples were processed for protein extraction and subjected to gelatin zymography evaluation. Additionally, we performed an experiment of gelatin zymography in which 5 ΌM or 2 mM cadmium chloride (CdCl2) was directly dissolved at the incubation buffer, using the prostatic tissue samples from untreated animals that exhibited the highest MMP2 and MMP9 activities in the previous experiment. We have found that CdCl2 intake in the drinking water led to the inhibition of 35% and 30% of MMP2 and MMP9 (p < 0.05) at the ventral prostate and testis, respectively, in Cd2+ treated animals when compared to controls. Moreover, the activities of the referred enzymes were 80% and 100% inhibited by 5 ΌM and 2 mM of CdCl2, respectively, even in the presence of 10 mM of CaCl2 within the incubation buffer solution. These important findings demonstrate that environmental cadmium contamination may deregulate the natural balance in the extracellular matrix turnover, through MMPs downregulation, which could contribute to the toxic effects observed in prostatic and testicular tissue after its exposure