19 research outputs found

    The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation

    Get PDF
    Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis

    Liberalisation, surveillance and suicide at La Poste

    Get PDF
    This article examines how the contradictory dynamics of freedom and control that characterise neoliberal capitalism are played out on lived experiences of work in the context of the newly liberalised and restructured French postal services (La Poste). At La Poste, liberalisation was framed as a great emancipatory project that would reinvigorate a moribund state-owned company, remove regulatory constraints, deepen economic freedoms and strip away deadening bureaucracy. Yet, whilst liberalisation freed La Poste of regulatory controls, it was accompanied by an intensified surveillance and control of everyday working life. The new control measures were not limited to external working practices and structures, but sought to capture the individual worker’s personality, communication and values and harness them towards the company’s redefined commercial goals. Drawing on critical scholarship on neoliberal capitalism and labour, the article shows that when capitalist rationality extends beyond working activity and encroaches on complex, intimate and vulnerable dimensions of the person, this can have dangerous human consequences. At La Poste, liberalisation triggered a profound crisis across the company, transforming it into an ‘entreprise en souffrance’ characterised by escalating levels of psychological distress, chronic stress and a series of employee suicides

    Congenital cytomegalovirus infection alters olfaction prior to hearing deterioration in mice

    Get PDF
    The odorant mixtures are the subject of a patent application (EP3245944 published on November 22, 2017) by Institut Pasteur, Centre National de la Recherche Scientifique, and Assistance Publique–Hôpitaux de Paris on which F.L., P.-M.L., N.T., and S.L. are named as inventors. The remaining authors declare no competing financial interests.International audienceIn developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants. Although sensory inputs to the OB remain unchanged, hallmarks of autophagy are increased in the OB of 3-postnatal week-old mice, leading to local neuroinflammation and loss of neurons expressing tyrosine hydroxylase and calbindin. At the cellular level, we found CMV-infected cells and an increased number of apoptotic cells scattered throughout the OB layers, whereas cell proliferation in the neurogenic subventricular zone was decreased. These cellular observations were long-lasting, persisting up to 16 weeks after birth in both males and females and thus providing a mechanism supporting olfactory loss. Despite obvious differences in neurogenesis between human and mouse, these findings offer new strategies aimed at early detection of neurological dysfunctions caused by congenital infections.SIGNIFICANCE STATEMENT In developed countries, congenital cytomegalovirus (CMV)-infected newborns are at high risk of developing sensory handicaps such as hearing loss, thus requiring prolonged follow-up. In this study, we describe for the first time the functional impact of congenital CMV infection on the olfactory system and its associated sense of smell. We demonstrate that a mouse model of congenital CMV infection shows defects in olfactory bulb (OB) normal development and pronounced olfactory deficits affecting acuity and discrimination of odorants. These major olfactory deficits occur long before the emergence of auditory deficits through the upregulation of OB autophagy inducing local neuroinflammation and altered neuron content. Our findings provide new opportunities for designing olfactory means to monitor the possible neurological outcome during congenital CMV infection

    A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis.

    No full text
    More than 90% of cervical carcinomas are associated with human papillomavirus (HPV) infection. The two viral oncogenes E6 and E7 play a major role in transforming the cells by disrupting p53- and pRb-dependent cell cycle checkpoints. A hallmark of HPV-associated cervical carcinoma is loss of the expression of the viral E2 protein, often by disruption of E2-encoding gene. We showed previously that reintroduction of E2 in HPV18-associated cervical carcinoma cells induces cell cycle arrest in G(1) because of the transcriptional repression of the viral oncogenes E6 and E7 and concomitant reactivation of the p53 and pRb pathways. Here we describe global gene profiling of HeLa cells expressing different HPV18 E2 mutants to study the effects of repression of the viral oncogenes. We identified 128 genes transcriptionally regulated by the viral oncogenes in cervical carcinoma. Surprisingly, E2 repressed a subset of E2F-regulated mitotic genes in an E6/E7-dependent pathway. This was corroborated by the observation that E2 delayed mitotic progression, suggesting the involvement of a mitotic pathway in HPV carcinogenesis. These mitotic genes constitute an as yet unrecognized set of genes, which were also found deregulated in other HPV-associated cervical carcinoma cell lines and therefore represent new targets for both diagnosis and therapeutic approaches in cervical cancer

    A New E6/P63 Pathway, Together with a Strong E7/E2F Mitotic Pathway, Modulates the Transcriptome in Cervical Cancer Cells▿

    No full text
    Cervical carcinoma is associated with certain types of human papillomaviruses expressing the E6 and E7 oncogenes, which are involved in carcinogenesis through their interactions with the p53 and pRB pathways, respectively. A critical event on the path to malignant transformation is often manifested by the loss of expression of the viral E2 transcription factor due to the integration into the host genome of the viral DNA. Using microarrays, we have previously shown that reintroduction of a functional E2 in the HeLa cervical carcinoma cell line activates a cluster of p53 target genes while at the same time severely repressing a group of E2F target genes. In the present study, using new high-density microarrays containing more than 22,000 human cDNA sequences, we identified a novel p63 pathway among E2-activated genes and 38 new mitotic genes repressed by E2. We then sought to determine the pathways through which these genes were modulated and used an approach that relies on small interfering RNA to demonstrate that the p63 target genes were activated through silencing of the E6/E6AP pathway while the mitotic genes were mainly repressed through E7 silencing. Importantly, a subset of the mitotic genes was shown to be significantly induced in biopsies of stage IV cervical cancers, which points to a prominent E7 pathway in cervical carcinoma

    Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy

    No full text
    <p>The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event.</p
    corecore