11 research outputs found

    Helioseismic and Magnetic Imager observations of linear polarization from a loop prominence system

    Full text link
    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼\sim20% at an altitude of ∼\sim33 Mm, about the maximal amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2×\times1014^{14} g. At 15 Mm altitude, the brightest part of the loop was 3(+/-0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm), probably thermal emission. We estimated the free electron density of the white-light loop system to possibly be as high as 1.8×\times1012^{12} cm−3^{-3}.Comment: 9 pages, 5 figure

    Helioseismic Travel-Time Definitions and Sensitivity to Horizontal Flows Obtained From Simulations of Solar Convection

    Full text link
    We study the sensitivity of wave travel times to steady and spatially homogeneous horizontal flows added to a realistic simulation of the solar convection performed by Robert F. Stein, Ake Nordlund, Dali Georgobiani, and David Benson. Three commonly used definitions of travel times are compared. We show that the relationship between travel-time difference and flow amplitude exhibits a non-linearity depending on the travel distance, the travel-time definition considered, and the details of the time-distance analysis (in particular, the impact of the phase-speed filter width). For times measured using a Gabor wavelet fit, the travel-time differences become nonlinear in the flow strength for flows of about 300 m/s, and this non-linearity reaches almost 60% at 1200 m/s (relative difference between actual travel time and expected time for a linear behaviour). We show that for travel distances greater than about 17 Mm, the ray approximation predicts the sensitivity of travel-time shifts to uniform flows. For smaller distances, the ray approximation can be inaccurate by more than a factor of three.Comment: 24 pages, 10 figure

    Rôle de l'héliosismologie dans la dynamique interne du Soleil et dans le problème des neutrinos solaires

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Are Grimmia Mosses Good Biomonitors for Urban Atmospheric Metallic Pollution? Preliminary Evidence from a French Case Study on Cadmium

    No full text
    International audienceAssessment of human exposure to atmospheric metals is a challenge, and mosses seem to be good biomonitors to help this purpose. Lacking roots, they are easy to collect and analyze. However, to our knowledge, no formal comparison was made between cadmium (Cd) measurements in Grimmia mosses and alternative forecasts of atmospheric Cd pollution as those produced by the CHIMERE chemistry transport model. This work aims at studying this link to improve further biomonitoring. We compare 128 Cd measurements in the cemetery mosses of Paris and Lyon metropolitan areas (France) to CHIMERE Cd atmospheric forecasts. The area to consider around the cemetery for the CHIMERE forecasts has been defined by Kendall rank correlations between both information sources—Cd in mosses and CHIMERE Cd forecasts—from different area sizes. Then, we fit linear models to those two data sets including step-by-step different sources of uncertainty. Finally, we calculate moss predictions to compare predictions and measurements in the two cities. The results show an apparent link between the Cd concentrations in mosses and CHIMERE Cd forecasts including in addition the same unique covariate, the moss support (grave or wall), in the two cities. However, this model cannot be directly transposed from region to region because the strength of the link appears to be regional

    Organic aerosol molecular composition and gas–particle partitioning coefficients at a Mediterranean site (Corsica)

    No full text
    International audienceMolecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry (GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3–C7), mono and di-carboxylic acids (C3–C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached

    Organic aerosol molecular composition and gas–particle partitioning coefficients at a Mediterranean site (Corsica)

    No full text
    International audienceMolecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry (GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3–C7), mono and di-carboxylic acids (C3–C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached
    corecore