3 research outputs found

    A Retrospective Evaluation of the Predictive Value of Newborn Screening for Vitamin B12 Deficiency in Symptomatic Infants Below 1 Year of Age

    Get PDF
    Background: The sensitivity of newborn screening (NBS) in detecting infants that later develop symptomatic vitamin B12 deficiency is unknown. We evaluated the predictive value using NBS algorithms in detecting infants that later were clinically diagnosed with symptomatic B12 deficiency. Furthermore, we investigated whether being born in a hospital using nitrous oxide (N2O) as pain relief in labor may have had an impact on total homocysteine at NBS. Methods: We retrospectively retrieved NBS data and analyzed total homocysteine, methylmalonic acid and methyl citrate on stored NBS dried blood spots (DBS) of 70 infants diagnosed with symptomatic B12 deficiency and compared them to 646 matched and 434 unmatched DBS controls to evaluate the Austrian and Heidelberg B12 NBS algorithms. Results: The sensitivity of NBS in detecting infants later diagnosed with symptomatic B12 deficiency at median age 10.9 weeks was ≤10%. Total homocysteine was higher in DBS for the unmatched controls who were born in hospitals providing N2O compared to in hospitals not providing N2O, with median total homocysteine 4.0 µmol/L compared to 3.5 µmol/L (n = 434, 95% CI 0.04–0.87, p = 0.03). Conclusion: NBS algorithms were unable to identify most infants diagnosed with symptomatic B12 deficiency after the neonatal period. Being born in hospitals providing N2O may impact total homocysteine at NBS

    Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses

    Get PDF
    In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies
    corecore