153 research outputs found

    Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines

    Get PDF
    Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries

    Feline Morbillivirus: Clinical Relevance of a Widespread Endemic Viral Infection of Cats

    Get PDF
    Feline morbillivirus (FeMV) was first isolated in 2012 from stray cats in Hong Kong. It has been found in association with tubulointerstitial nephritis (TIN), the most common cause of feline chronic kidney disease (CKD). However, viral host spectrum and virus tropism go beyond the domestic cat and kidney tissues. The viral genetic diversity of FeMV is extensive, but it is not known if this is clinically relevant. Urine and kidney tissues have been widely tested in attempts to confirm associations between FeMV infection and renal disease, but samples from both healthy and sick cats can test positive and some cross-sectional studies have not found associations between FeMV infection and CKD. There is also evidence for acute kidney injury following infection with FeMV. The results of prevalence studies differ greatly depending on the population tested and methodologies used for detection, but worldwide distribution of FeMV has been shown. Experimental studies have confirmed previous field observations that higher viral loads are present in the urine compared to other tissues, and renal TIN lesions associated with FeMV antigen have been demonstrated, alongside virus lymphotropism and viraemia-associated lymphopenia. Longitudinal field studies have revealed persistent viral shedding in urine, although infection can be cleared spontaneously

    Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed ORF3 region.

    Get PDF
    Our previous in vitro comparative study on a feline coronavirus (FCoV) pair, differing only in the intactness of their ORF3abc regions, showed that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II feline infectious peritonitis virus (FIPV). In the present study, we describe a challenge experiment with the same recombinant FCoVs in order to gain data on the in vivo characteristics on these viruses. While parent virus FIPV DF-2 developed feline infectious peritonitis in all the infected cats, its recombinant virus PBFIPV-DF-2, differing only in seven nucleotides, proved to be surprisingly low virulent, although caused an acute febrile episode similarly to the original FIPV DF-2. PBFIPV-DF-2 infection induced significantly lower virus neutralization titers than its parent virus, and lacked the second phase of viremia and development of fatal course of the disease. The recombinant PBFIPV-DF-2-R3i with completed ORF3abc gained biological properties that differentiate between the feline enteric coronavirus (FECV) and FIPV biotypes such as intensive replication in the gut, absence of viremia and weak or no serological response. Using reverse genetic approaches our study is the first experimental proof that ORF3abc is indeed responsible for the restriction of FECV replication to the intestine in vivo

    Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats.

    Get PDF
    Feline infectious peritonitis virus (FIPV) is a major pathogen of Felidae. Despite the extensive efforts taken in the past decades, development of the "ideal" live attenuated FIPV vaccine was not successful yet. In the present study, we provide data of immunisation experiments with a recombinant FCoV pair differing only in the truncation (PBFIPV-DF-2) or completion (PBFIPV-DF-2-R3i) of their ORF3abc regions. In our previous in vivo studies, these viruses proved to show the characters of low virulent or avirulent FCoV phenotypes, respectively. Therefore, we hypothesised the ability of these viruses, as possible vaccine candidates, in conferring protection in specific pathogen free (SPF) Domestic Shorthair as well as in conventional purebred British Shorthair cats. In SPF cats, after two oronasal and two intramuscular vaccinations with two weeks intervals, both vaccine candidates provided 100% protection against lethal homologous challenge with the highly virulent FIPV DF-2 strain. In contrast, the conventional purebred British Shorthair cats did not develop protection when they were immunised with the same vaccination regimes. In these groups 100% of the PBFIPV-DF-2-R3i immunised animals developed antibody-dependent enhancement (ADE). Prolonged survival was observed in 40% of the animals, while 60% showed fulminant disease course. Genetic and more probably immunological differences between the SPF and non-SPF purebred kittens can explain the different outcome of the vaccination experiment. Our data highlight the diverse immune responses between SPF and conventional cats and suggest a decisive role of previous infection by heterologous causative agents in the outcome of the vaccination against FIP

    Immunological and biochemical characterisation of 7ap, a short protein translated from an alternative frame of ORF7 of PRRSV

    Get PDF
    Sequence analysis revealed a short alternative open reading frame (ORF) named ORF7a within the nucleocapsid gene of genetically divergent porcine reproductive and respiratory syndrome virus (PRRSV) genomes. Alignment of the corresponding protein sequences (named 7ap) revealed substantial heterogeneity among 7aps of different genotypes, though all of them are predicted to be positively charged. Green fluorescent protein and FLAG fusion constructs of ORF7a of the HU-14432/2011 PRRSV demonstrated that 7ap is expressed. 7ap of HU- 14432/2011 (Hu7ap) was synthesised chemically, and ELISA experiments revealed that Hu7ap binds strongly to mammalian IgGs. Protein-protein gel retardation assays and complement fixation inhibition suggest that 7aps bind to the CH2 domain of the IgG(Fc) fragment. Cellular localisation and immunological characteristics of PRRSV 7ap may indicate multiple functions including nuclear and cytoplasmic over-tuning of normal cellular processes and immunosuppression

    Isolation and characterisation of a ruminant alphaherpesvirus closely related to bovine herpesvirus 1 in a free-ranging red deer

    Get PDF
    BACKGROUND: The genus Varicellovirus of the Herpesviridae subfamily Alphaherpesvirinae includes a cluster of viruses antigenically and genetically related to bovine herpesvirus 1 (BoHV-1): namely bovine herpesvirus 5 (BoHV-5), bubaline herpesvirus 1 (BuHV-1), caprine herpesvirus 1 (CpHV-1), cervid herpesviruses 1 (CvHV-1) and 2 (CvHV-2) and elk herpesvirus 1 (ElkHV-1). Considering the serological relationship between these ruminant alphaherpesviruses, several surveys have studied the occurrence of BoHV-1 related virus infection in wild and domestic ruminant species. In this way, a recent investigation has indicated, in Belgium, a high increase in the serological prevalence of BoHV-1 related virus infection in free-ranging red deer population. In this context, it has been decided to investigate the presence of an alphaherpesvirus spreading in the Belgian free-ranging red deer population. RESULTS: The current study reports the first isolation in a free-ranging red deer of a BoHV-1 closely related virus. The isolate was antigenically, genomically and genetically characterised by comparison with several ruminant alphaherpesvirus. Immunofluorescence assays revealed the isolate was antigenically distinct from bovine and caprine alphaherpesviruses. Similarly, BamHI and BstEII restriction analyses demonstrated the genomic difference between the isolate and the other ruminant alphaherpesviruses. Next, the sequencing of selected parts of UL27 and US8 genes showed a high degree of homologies between each BoHV-1 related ruminant alphaherpesvirus and the isolate. Besides the close relationship between all ruminant alphaherpesviruses, the phylogenetic analysis revealed that the isolate clustered with CvHV-1. CONCLUSION: The first isolation of a virus closely related to BoHV-1 in a free-ranging red deer is reported. Data demonstrate that a CvHV-1 strain, named Anlier, circulates in wild red deer in continental Europe. Anlier strain show consistent differences with the virus isolated from Scottish farmed red deer. All together, these results improve our understanding of ruminant alphaherpesviruses

    Swine influenza viruses isolated in 1983, 2002 and 2009 in Sweden exemplify different lineages

    Get PDF
    Swine influenza virus isolates originating from outbreaks in Sweden from 1983, 2002 and 2009 were subjected to nucleotide sequencing and phylogenetic analysis. The aim of the studies was to obtain an overview on their potential relatedness as well as to provide data for broader scale studies on swine influenza epidemiology. Nonetheless, analyzing archive isolates is justified by the efforts directed to the comprehension of the appearance of pandemic H1N1 influenza virus. Interestingly, this study illustrates the evolution of swine influenza viruses in Europe, because the earliest isolate belonged to 'classical' swine H1N1, the subsequent ones to Eurasian 'avian-like' swine H1N1 and reassortant 'avian-like' swine H1N2 lineages, respectively. The latter two showed close genetic relatedness regarding their PB2, HA, NP, and NS genes, suggesting common ancestry. The study substantiates the importance of molecular surveillance for swine influenza viruses

    Full-length genome sequence analysis of a Hungarian Porcine Reproductive and Respiratory Syndrome Virus isolated from severe respiratory disease

    Get PDF
    The authors report the isolation of a Type 1 PRRSV strain from a clinical outbreak of severe respiratory problems and high fever. Next generation sequencing was used to determine the complete genome sequence of the isolate (9625/2012). The virus belongs to a new branch within subtype 1, clade D, containing mostly Spanish sequences and shows highest similarity to PRRSV Olot/1991 and to the Amervac vaccine strain. SimPlot analysis performed with the available full-length genome sequences indicates no evidences of recombination. Mutation analysis of 9625/2012 and the most related strains revealed high proportion of amino acid substitutions in the putative neutralizing epitopes, suggesting an important role of the selective immune pressure in the evolution of PRRSV 9625/2012

    Prevalence and Phylogeny of Coronaviruses in Wild Birds from the Bering Strait Area (Beringia)

    Get PDF
    Coronaviruses (CoVs) can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV) belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology
    corecore