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Abstract

Our previous in vitro comparative study on a feline coronavirus (FCoV) pair, differing only in the intactness of their ORF3abc
regions, showed that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type
II feline infectious peritonitis virus (FIPV). In the present study, we describe a challenge experiment with the same
recombinant FCoVs in order to gain data on the in vivo characteristics on these viruses. While parent virus FIPV DF-2
developed feline infectious peritonitis in all the infected cats, its recombinant virus PBFIPV-DF-2, differing only in seven
nucleotides, proved to be surprisingly low virulent, although caused an acute febrile episode similarly to the original FIPV
DF-2. PBFIPV-DF-2 infection induced significantly lower virus neutralization titers than its parent virus, and lacked the
second phase of viremia and development of fatal course of the disease. The recombinant PBFIPV-DF-2-R3i with completed
ORF3abc gained biological properties that differentiate between the feline enteric coronavirus (FECV) and FIPV biotypes
such as intensive replication in the gut, absence of viremia and weak or no serological response. Using reverse genetic
approaches our study is the first experimental proof that ORF3abc is indeed responsible for the restriction of FECV
replication to the intestine in vivo.
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Djurförsäkring; Országos Tudományos Kutatási Alapprogramok (OTKA), and Nemzeti Kutatási és Technológiai Hivatal (NKTH) (Mobilitás 08-C OTKA 81187; and
János Bolyai Fellowship from the Hungarian Academy of Sciences (BO/00414/10). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors received funding of this work from a commercial source (Agria Animal Insurance Company). This does not alter the authors’
adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: balintad@nebih.gov.hu

Introduction

Feline coronaviruses (FCoVs), members of the Alphacoronavirus

genus within the Coronaviridae family, are major pathogens of Felidae

with worldwide distribution [1]. FCoV occurs in two pathotypes;

feline enteric coronavirus (FECV) primarily replicates in the lower

portion of intestinal tract, spreads by fecal-oral route, and its

clinical appearance is characterized by mild or unapparent

enteritis [2,3]. In contrast, feline infectious peritonitis virus (FIPV)

efficiently replicates in macrophages/monocytes, and can lead to

feline infectious peritonitis (FIP), a highly lethal systemic granu-

lomatous disease, [4–8].

FIPVs arise most likely from FECV in the infected cat via

genetic changes [9]. Characteristic changes can be detected in the

spike (S) gene [10,11], in the ORF7ab [9,12,13] and the ORF3abc

[9,14–16] regions. FECVs have three open reading frames (ORFs)

in the ORF3abc region [6] that code proteins conserved both in

length and sequence in different isolates. On the contrary, the

majority of FIPVs contain genetic alterations (non-synonymous

mutations, deletions and termination codons) mostly in ORF3c

but not rarely in ORF3a and ORF3b [9,14].

The first in vitro comparison of a recombinant FCoV pair

differing only in the intactness of their ORF3abc revealed that

completion of the truncated ORF3abc reduces virus replication

rate by 2log10 titer in feline peripheral blood monocytes [17]

supporting the long time suspected but never experimentally

proved theory that completion of this region alters the in vivo

characteristics and pathogenesis of FCoV [8].

In the present study using the parent FIPV DF-2 strain and its

recombinant derivates we aimed to collect in vivo data how the

completed ORF3abc alters virulence, virus shedding, viremia,

viral load of organs and humoral immune response against type II

FCoV. The data of our experiments show that completion of

ORF3abc vested the highly virulent FIPV DF-2 with properties

that are characteristic to FECV.

Materials and Methods

Cells and Viruses
Felis catus whole fetus 4 (FCWF-4) cells originally purchased

from the American Type Culture Collection were used for virus

propagation, titration and virus neutralization tests. The cell line

was maintained as monolayer culture in Dulbecco’s Modified
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Eagle Medium (Sigma-Aldrich, Saint Louis, MO, USA) supple-

mented with 10% fetal bovine serum (FBS), 0.3 mg/ml glutamine,

100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.25 mg/ml am-

photericin B, 1 mM sodium pyruvate, and 1% non-essential

amino acids (Sigma-Aldrich). The FIPV DF-2 strain was kindly

provided by Berndt Klingeborn (SVA, Uppsala, Sweden). FIPV

DF-2 is a regular tissue culture adapted strain that has been well

described in the literature, and also used by many other

investigators under this name or as FIPV-79-1146 or FIPV-

Nor15 [16]. Generation of the recombinant PBFIPV-DF-2 and

PBFIPV-DF-2-R3i was described elsewhere [17]. Briefly,

PBFIPV-DF-2 is a virus that originated as a molecular clone of

FIPV DF-2 and then was successfully transfected into cat cells,

where it was replicated for several generations before use in this

study. PBFIPV-DF-2-R3i is a derivate of PBFIPV-DF-2 that was

re-engineered to contain the intact ORF3abc region of canine

coronavirus, and was also transfected into cat cells and cultivated

for several generations before being used in this study.

Sequence Analysis
The complete genome of PBFIPV-DF-2 was reverse transcribed

using the high fidelity SuperScript III First-Strand Synthesis

System (Invitrogen, Carlsbad, CA, USA) and gene-specific

primers. Long PCR fragments overlapping the whole genome

were amplified with Phusion Hot Start High-Fidelity DNA

Polymerase (Finnzymes, Espoo, Finland) and sequenced using

the Ion Proton System (Life Technologies, Carlsbad, CA, USA).

Sequences were aligned and analyzed with the SeqMan Ngen

software (Lasergene, Madison, WI, USA).

Animal Experiments
Specific-pathogen-free IQHsdCpb kittens (Isoquimen SL,

Barcelona, Spain) were used in the challenge experiments. Kittens

arrived at the facility at the age of 8–12 weeks. They were

acclimated and used in the studies at the age of 14–18 weeks. The

animals were kept in separate groups in a closed facility. Their

FCoV negative status was checked with PCR, ELISA and virus

neutralization tests. Kittens were inoculated oronasally with 103

50% tissue culture infective doses (TCID50) of the parent virus

FIPV DF-2 (n = 4) and the recombinant viruses PFIPV-DF-2

(n = 4) and PFIPV-FD-2-R3i (n = 4), respectively. Kittens were

clinically examined on a daily basis for 42 days. Cats were scored

for several clinical signs as described earlier [18]. Briefly, scoring

was based on depression (inactivity for three consecutive days, 1

point), anorexia (not eating for three consecutive days, 1 point),

and neurological disorders (swaggering, 1 point) on a daily basis,

while fever (40.1uC, 1 point), jaundice (yellow plasma, 1 point),

weight loss (loss of 2.5% of body weight per week, 1 point), and

lymphopenia (lymphocyte count of ,0.56109/liter) was scored on

weekly basis. Kittens showing signs of terminal FIP were

euthanized in order to avoid unnecessary suffering, while healthy

animals were exterminated at day 42 postinfection (p.i.), followed

by full postmortem examination. All animal experiments were

approved and supervised by the Ethical and Animal Welfare

Committee of National Food Chain Safety Office (Permission No:

2866/2011). The total number of animals was carefully deter-

mined by considering two main principles: i.) the number of

animals should be ensured proper amount of samples for statistical

analysis and ii.) the 3R rules (Replacement, Reduction and

Refinement) must be implemented.

Detection of Virus Shedding
To determine virus shedding in feces, fecal swabs were collected

at days 0, 7, 14, 21, 28, 35 and 42 p.i., and placed in 500 ml of

phosphate buffered saline (PBS). After vortexing and 30 min

incubation, the swabs were removed, and the extract was

centrifuged at 1000 x g for 10 min to remove cell debris. The

supernatant was used for subsequent PCR.

Viral RNA was purified using the QIAamp Viral RNA Mini Kit

(Qiagen, Hilden Germany). All RNA was stored at -80uC until

used. To measure the copy numbers of the genome and replicative

forms of CoVs, two TaqMan-based quantitative real-time PCR

(qRT-PCR) assays targeting the 59 end of the FIPV DF-2 genome

and the N gene subgenomic (sg) mRNA were applied, respectively

[17]. Each RNA sample was analyzed in duplicates in two

different runs. Differences in original template RNA levels were

normalized by using housekeeping gene b-actin PCR [19]. Means

of the four normalized data per sample were used for further

analysis.

Detection of Viremia
RNA was extracted from whole EDTA anticoagulated blood

taken at days 0, 7, 14, 21, 28, 35 and 42 p.i. using the QIAamp

RNA Blood Mini Kit (Qiagen) according to the manufacturer’s

instructions, and was subjected to genomic and subgenomic qRT-

PCRs.

Viral Load of Organs
To detect virus load in different organs (liver, spleen, kidney,

lung, tonsil, mesenteric lymph nodes, brain and ileum,) approx-

imately 0.5 g pieces of organs diluted in sterile phosphate-buffered

saline (PBS) were homogenized with Tissue Lyser (Qiagen, Hilden,

Germany) to obtain 50% w/v suspension and then were

centrifuged at 1000 x g for 10 min to remove cell debris. RNA

was extracted from the supernatant using the QIAamp Viral RNA

Mini Kit (Qiagen), and was subjected to subsequent genomic and

subgenomic qRT-PCRs.

Serological Assays
Serum samples were taken using VacuetteH tube (Greiner Bio-

One, Germany) at days 0, 7, 14, 21, 28, 35 and 42 p.i. For

antibody ELISA tests, the FCoV EIA Kit, (BV European

Veterinary Laboratory, The Netherlands) was used according to

the recommendations of the manufacturer.

For virus neutralization (VN) assay, two-fold dilutions of heat-

inactivated serum from kittens (50 ml) were incubated for 1 hour at

37uC with equal aliquots of FIPV DF-2 (50 ml of 103.5 TCID50/

ml). The viruses were then added to FCWF-4 cells showing 70%

confluency in a 96-well plate, and incubated for 48 h, until the

development of cytopathic effect. Neutralizing activity was

determined by end-point dilution [20].

Statistical Analysis
To determine the statistically significant difference between the

VN titers generated after inoculation with the three FCoVs, the

unpaired two-tailed Student T test with equal variances was

applied. The p value under 0.05 was considered as a statistically

significant difference.

Results

Virulence of Recombinant Viruses
Cats inoculated with the parent virus FIPV-DF-2 showed rapid

development of FIP at day 10–16 p.i. The animals exhibited

depression and anorexia, in most cases with fever, jaundice, weight

loss and lymphopenia, and they had to be euthanized between

days 21–25 (Table 1). Pathological examinations proved the

characteristic lesions of effusive FIP with multiple dispersed
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pyogranulomas in the abdominal organs such as livers, spleens and

kidneys.

Surprisingly, cats challenged with PBFIPV-DF-2, a recombi-

nant FCoV containing truncated ORF3abc like the parent virus,

showed only clinical signs of the acute phase of the disease,

including transient fever from day 3 to 8, anorexia and slight

lymphopenia (Table 1). All cats fully recovered and survived until

termination of the experiment (day 42 p.i.). Macroscopically no

lesions were observed in these animals.

Cats inoculated with PBFIPV-DF-2-R3i, the recombinant

FCoV containing complemented ORF3abc, showed neither any

clinical signs typical of FIP nor diarrhea (Table 1). All cats

survived, and showed no macroscopic lesions except for slight

enlargement of mesenteric lymph nodes in two animals.

In order to elucidate the unexpected low-virulent phenotype of

PBFIPV-DF-2, the full-length genomic sequence of the virion was

determined using next generation sequencing, and data revealed

that besides the 1-nucleotid (nt) change at position 24429 (G/A)

that resulted in an amino acid (aa) change in the fusion domain of

S protein at position 1332 (V/I) and the 1-nt silent mutation at

position 26064 (T/C) in the M gene found also in the infectious

clone [17], additional mutations are present in the viral genome.

In the ORF1ab gene, three nucleotide substitutions were found at

positions 3098 (A/G), 5241 (G/A) and 7632 (C/T) resulting in aa

changes at positions 930 (T/A), 1644 (G/D) and 2441 (S/L)

affecting non-structural proteins (nsps) 3 and 4. Furthermore, a

single nt change was present at position 27817 (C/G) affecting the

last nucleotide of ORF 7 transcription regulatory sequence (TRS),

and a 1-nt substitution also occurred at position 28492 (G/C)

causing an amino acid change at position 121 (K/N) in the 7b

protein. The possible role of mutation of the TRS of ORF7 in

decreased ORF7 mRNA transcription was examined by an

ORF7-specific subgenomic qRT-PCR assay, and similar sub-

genomic ORF7 mRNA levels were detected after inoculating

FCWF cells with the wild type and recombinant FCoVs,

indicating no effect of this mutation to mRNA transcription (data

not shown). The genome of PBFIPV-DF-2-R3i contained only the

point mutations observed in the infectious clone.

Virus Shedding
Shedding of FIPV DF-2 and PBFIPV-DF-2 was detected from

day 3 p.i. to euthanasia of the PIP diseased animals at very low and

variable amounts of an average value close to the detection limit of

the genomic qRT-PCR (1.96101 FCoV RNA copies per ml fecal

extract) (Fig. 1) with undetectable virus replication using the

subgenomic qRT-PCR assay (data not shown). Virus shedding

decreased to undetectable levels from day 21 p.i. in the PBFIPV

inoculated animals.

The PBFIPV-DF-2-R3i infected cats began to shed the virus

from day 3 p.i., virus shedding peaked at day 7 p.i. with 8.36105

FCoV RNA copies per ml fecal extract, remained high until day 14

p.i., then began to decrease until reaching 1.26102 FCoV RNA

copies per ml fecal extract at day 35 p.i., and remained at this level

until the end of the experiment (Fig. 1).

FCoV Viremia
A classic biphasic viremia was observed in FIPV DF-2 infected

cats. FCoV RNA was detected from day 3 p.i., reached a first peak

of 4.86103 FCoV RNA copies per ml blood by day 7 p.i., then

decreased quickly after the emergence of neutralizing antibodies.

A second wave of viremia was detected from day 14 p.i. until death

peaking at 5.86104 FCoV RNA copies per ml blood (Fig. 2).

The PBFIPV-DF-2 infected cats developed only the first phase

of viremia, FCoV RNA was detected in blood from day 3 p.i.,

reached a peak of 16103 FCoV RNA copies per ml blood by dy 7

p.i., and decreased to undetectable level at day 21 (Fig. 2).

In cats inoculated with PBFIPV-DF-2-R3i, complete absence of

viremia was observed, the presence of FCoV genomic RNA in

Table 1. Total clinical scores of cats challenged oronasally with the parent virus FIPV DF-2 (n = 4) and recombinant FCoVs PBFIPV-
DF-2 (n = 4) and PBFIPV-DF-2-R3i (n = 4).

Virus and
animal no. Clinical score

Total
clinical
score

Day of death
postinfection

Fever Depression Anorexia Jaundice
Neurological
disorder Weight loss Lymphopenia

FIPV DF-2

1 2 2 2 3 1 3 2 15 21

2 2 2 2 3 0 2 2 13 25

3 2 3 3 3 1 3 2 17 21

4 2 2 2 3 1 2 2 14 22

PBFIPV- DF-2

5 1 1 1 0 0 1 1 5 –

6 1 1 1 0 0 1 1 5 –

7 1 1 0 0 0 0 0 2 –

8 1 1 1 0 0 0 1 4 –

PBFIPV-DF-2-R3i

9 0 0 0 0 0 0 0 0 –

10 0 0 0 0 0 0 0 0 –

11 0 0 0 0 0 0 0 0 –

12 0 0 0 0 0 0 0 0 –

doi:10.1371/journal.pone.0088758.t001
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blood was not detected until the termination of the experiment

(Fig. 2).

FCoV Viral Load in Tissues
Cats infected with FIPV DF-2 showed high viral load (4.66104–

1.26107 genomic RNA copies per g tissue) in the examined organs

with intensive virus replication but very limited RNA copy

numbers (1.16102 genomic RNA copies per g tissue) were

obtained from the gut (Fig. 3). In cats infected with PBFIPV-

DF-2, no detectable FCoV RNA copies were found in the

examined organs.

The PBFIPV-DF-2-R3i challenged animals tested highly

positive (3.66104 genomic RNA copies per g tissue) for FCoV

RNA in the ileum. In addition, significantly lower level of

positivity was observed in the mesenteric lymph node of two cats

(36102 genomic RNA copies per g tissue) (Fig. 3). No other organs

contained genomic RNA. The subgenomic qRT-PCR showed

replication only in the gut.

High copy number (.103) genomic qRT-PCR results were

confirmed with subgenomic qRT-PCR assay not only from organs

but all fecal and blood samples (data not shown).

Humoral Immune Response
According to the pre-experimental data, no FCoV antibodies

were detected at day 0 p.i. in any cat sera using ELISA and VN. In

the FIPV DF-2 inoculated animals, neutralizing antibodies

appeared by day 10 p.i., and reached high titers (2.46103) at

the time of euthanasia (Fig. 4).

The PBFIPV-DF-2 challenged cats developed neutralizing

antibodies from day 10 p.i. that elevated to lower levels

(6.46102) by day 35 p.i. than in the FIPV DF-2 inoculated

animals (Fig. 4). The difference between VN titers generated after

FIPV DF-2 and PBFIPV-DF-2 was statistically significant

(p = 0.037).

The PBFIPV-DF-2-R3i infected cats showed variable results. As

ELISA and VN assays showed, two animals did not seroconvert

(data not shown). Two animals seroconverted by day 14 p.i., and

their VN titers remained at low levels (9.66101) compared with

those of the PBFIPV-DF-2 infected cats (Fig. 4). The difference

between VN titers generated after PBFIPV-DF-2 and PBFIPV-

DF-2-R3i was statistically significant (p = 0.013).

Discussion

The distinctive factor of the different pathogenesis of the two

FCoV biotypes is the increased macrophage tropism of FIPV

[10,21], while FECV is tropic for the mature intestinal epithelium

[22,23]. Although alterations of several different genes of FCoV

are suspected in the background of phenotypic characteristics, the

most widely accepted theory suggests the possible role of the

truncated ORF3abc in the altered tropism and consequent

pathogenesis of the two biotypes [9,14,16,18,24]. However, an

identical FCoV pair differing only in the intactness of ORF3abc

has not been tested yet in vivo due to the lack of a cell culture for

propagation of type I FECV and a ‘‘true’’ type II FECV isolate

[8]. Our previous in vitro experiments added further evidence to

the involvement of truncated ORF3abc to the increased macro-

phage tropism of type II FCoV [17]. In the present study,

characterizing the parent FIPV DF-2 and the recombinant FCoV

pair in in vivo experiments, we were able to distinguish significant

differences in their biological properties.

Development of typical clinical signs and post mortem lesions of

classical FIP were observed in cats infected with the parent virus

FIPV DF-2 similarly as it was reported earlier [5,18,25].

Unexpectedly, kittens inoculated with PBFIPV-DF-2 showed only

the acute phase of the disease with similar tropism as its wild-type

parent FIPV DF-2. Sequencing of the pBFIPV-DF-2 infectious

clone [17] and the recovered virus PBFIPV-DF-2 that was

passaged in FCWF three times revealed point mutations originat-

ed in two waves during cloning (24429 (G/A) and 26064 (T/C))

and passaging (3098 (A/G), 5241 (G/A),7632 (C/T), 27817 (C/G)

and 28492 (G/C)).

One of the two aa substitutions affecting nsp3 was found in

papain-like protease 2 responsible for proteolytic processing of

Figure 1. Fecal shedding of FCoV by cats challenged oronasally
with the parent virus FIPV DF-2 and recombinant FCoVs
PBFIPV-DF-2 (n=4) and PBFIPV-DF-2-R3i (n =4), as monitored
with genomic qRT-PCR. The means of groups are given. Error bars
represent standard deviations.
doi:10.1371/journal.pone.0088758.g001

Figure 2. FCoV viraemia of cats challenged oronasally with the
parent virus FIPV DF-2 (n=4) and recombinant FCoVs PBFIPV-
DF-2(n=4) and PBFIPV-DF-2-R3i (n=4), as monitored with
genomic qRT-PCR. The means of groups are given. Error bars
represent standard deviations.
doi:10.1371/journal.pone.0088758.g002
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nsp1 and nsp2 [26], proteins with functions of host gene

expression inhibition [27] and cellular signaling disruption [28].

One hydrophobic amino acid change (V to I) was identified

close to the second heptad repeat in the interhelical region of S2

fusion domain of S protein responsible for virus-mediated

membrane fusion. Similar conservative (M to L) aa substitution

is suspected to be responsible for attenuation of of type I FCoV

close to the first heptad repeat in this protein [11].

A nucleotide substitution found in the genome of PBFIPV-DF-2

affected the TRS of ORF7 gene. Mutations in TRS of

transmissible gastroenteritis virus (TGEV) were shown not to alter

virus replication in vitro [29]. Accordingly, in our in vitro experi-

ments, no difference was found between the replication dynamics

of the parent strain and the recombinant virus [17], and ORF7

mRNA transcription was found equal after both FIPV DF-2 and

PBFIPV-DF-2 infection.

The 7b protein is considered as one of the virulence factors of

FIPV [13,18,30,31]. However, several FIPVs have lost virulence

upon tissue culture passage do not have 7b mutations. A large

number of FIPV and FECV genomes in GenBank also confirm

that mutations in 7b are not associated with the FIP mutation.

Considering that the exact biological function of this protein is

unknown, and no single aa mutation in 7b was reported which

alter virulence of FCoV, the role of the aa substitution (K/N)

found in the 7b protein of PBFIPV-DF-2 is most likely has no

effect on the virulence of this cloned virus.

The difference in virulence could be the consequence of any or

combination of the point mutations in the genome of the

recombinant FCoV obtained from the infectious clone [17] and

during the three passages on FCWF after transfection and virus

recovery. Similar problems with the attenuation of a virulent type I

FCoV after bacterial cloning have been also reported by others

[32]. A transient fever is often seen during the first few days after

infection with virulent FIPVs, probably due to early host/virus

interactions, but actual disease signs of FIP only occur when

antibodies start to appear. The aforementioned mutations could

lead to less effective replication of PBFIPV-DF-2 in macrophages/

monocytes in vivo, or this mutated FCoV was not reacting in the

same manner with antibodies as its wild type counterpart.

The low and inconsistent level of fecal shedding following

inoculation with the parent FIPV DF-2 strain and the recombi-

nant PFIPV-DF-2 containing truncated ORF3 is similar to that of

previous observations [14,24]. A classic biphasic viremia detected

in FIPV DF-2 infected cats was similar to earlier experiments using

the genetically closest FIPV strain 79–1146 [5]. As it was suspected

from clinical signs, viremia was different in PBFIPV-DF-2

challenged animals. The infection kinetics of the two viruses was

similar in the first days of infection, with the first replication peak

at day 7 p.i. (Fig. 2), confirming our previous in vitro data obtained

from feline blood monocytes [17], although the titer of PBFIPV-

DF-2 was almost one log lower at the day of peak, and decreased

rapidly. Seroconversion also started at the same time in the FIPV

DF-2 and PBFIPV-DF-2 inoculated animals but remained at

lower level in the latter case until the end of the experiment. These

data indicate self-limiting replication of PBFIPV-DF-2 and

complete clearance by the immune system that was further

confirmed by the absence of the genomic RNA in the organs

(Fig. 3).

The differences between the biological properties of the two

viruses with truncated ORF3abc are substantial but by far less

pronounced than it can be observed between the ORF3abc

deleted and ORF3abc completed FCoVs. PBFIPV-DF-2-R3i

genome was invariably absent in the blood monocytes. As a

possible consequence of the absence of viremia, viral load of

organs was not detected, the presence of PBFIPV-DF-2-R3i was

found only in the mesenteric lymph node of two animals that

showed weak seroconversion. These data indicate rather carrier

role of macrophages/monocytes of FCoV with completed

ORF3abc from the sites of the intensive FCoV replication. The

absence of replication in blood monocytes of PBFIPV-DF-2-R3i

inoculated cats coincide with previous data collected after FECV

infection studies [3,22,23,33], which clearly demonstrated the

limited replication of the FECVs in mononuclear cells [5,34].

The weak or missing seroconversion of PBFIPV-DF-2-R3i

challenged cats is an obvious explanation of the low or absent

systemic replication of the virus, and it is comparable with

previous experimental type I FECV infections that showed low

and often variable antibody titers in serum or plasma

Figure 3. FCoV load of organs of cats challenged oronasally
with the parent virus FIPV DF-2 (n=4) and recombinant FCoVs
PBFIPV-DF-2 (n=4) and PBFIPV-DF-2-R3i (n =4), as monitored
with genomic qRT-PCR. The means of groups are given. Error bars
represent standard deviations.
doi:10.1371/journal.pone.0088758.g003

Figure 4. Induction of FCoV-neutralizing antibodies after
oronasal challenge of cats with the parent virus FIPV DF-2
(n=4) and recombinant FCoVs PBFIPV-DF-2(n=4) and PBFIPV-
DF-2-R3i (n =4). The means of groups are given. Error bars represent
standard deviations.
doi:10.1371/journal.pone.0088758.g004

In Vivo Analysis of FIPV DF-2 Recombinants
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[22,23,35,36], while a proportion of cats remained seronegative

despite intensive fecal virus shedding [22].

Indeed, intensive fecal shedding and virus replication was

detected during the whole period of the experiment and from the

ileum of the sacrificed cats challenged with PBFIPV-DF-2-R3i

carrying completed ORF3abc, in contrast to the other two

investigated viruses. Our results are in accordance with the classic

theory that mutations (deletions and nonsense mutations) altering

the number and size of proteins translated from ORF3abc

contribute to the altered tissue tropism of FIPV. This theory was

reinforced by genetic investigations [24] that revealed that non-

deleted ORF3abc of FIPVs accumulates four times more unique

non-synonymous amino acid mutations in the ORF3abc than the

FECVs, possibly modifying the biological function of these

proteins.

Data of PBFIPV-DF-2-R3i shedding in the present study are

similar with those of acute FECV and enteric CCoV infection.

Recent experiments [32] with recombinant type II FIPV showed

that ORF3c containing stop codon can be restored to code full-

length 3c protein by point mutation during replication in internal

organs and the gut. To investigate the mutability of this region we

sequenced the 3c region of PBFIPV-DF-2-R3i from fecal and

intestinal samples and we found no genetic alterations in this

region (data not shown).

In type I FECV challenge studies [23,35,37,38] FCoVs with

intact ORF3abc shed at significantly higher titers compared with

FIPVs, allowing horizontal spread to contact animals. The type II

FCoVs used in our challenge studies are the result of double

recombination between type I FCoV and type II CCoV [39]. In

this respect, results of the present study are also in accordance with

CCoV shedding pattern gained from canine experimental

infection [40].

Summarizing the results of our challenge experiment, and

comparing with previous experimental and clinical data, we

conclude that the ORF3abc truncated recombinant virus showed

attenuated phenotype with low virulence, transient viremia and

complete clearance of the virus. Therefore, we cannot draw clear

conclusion on the role of truncation of ORF3abc in the

development of FIPV pathogenesis, although the biological

properties of PBFIPV-DF-2 were closer to attenuated FIPV than

to those of FECV. However, completion of ORF3abc vested

PBFIPV-DF-2-R3i with biological properties that differentiate

between the FECV and FIPV biotypes, such as intensive

replication in the gut, absence of viremia and weak or no

serological response.

The observation of numerous natural and experimental FCoV

infection in the past decades led to the rise of the idea that

completed ORF3abc is indispensable for intestinal replication of

the virus. However, this theory has never been confirmed due to

the lack of an identical virus pair differing only in their ORF3abc

regions. Using such a virus pair our study is the first experimental

proof which confirms the decisive role of ORF3abc in the

intestinal replication of FCoV.
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